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Preface

Nowadays, Experimental Gravitation is one of the exciting areas in modern
physics. Many important experiments have entered their final state of realization:
In 2001 the interferometric gravitational wave detectors will start to collect data,
in May 2002 Gravity Probe B (Stanford orbiting gyroscope experiment) will be
launched, and, in 2005, STEP (the Satellite Test of the Equivalence Principle)
is planned to be put in orbit. All these experiments will give new momentum
to the field of experimental gravitation and, of course, to the development of
theoretical concepts in gravity.

Besides this, the development of many new devices for carrying through high-
precision measurements will open up new areas for testing the gravitational in-
teraction. New atomic clocks, such as the atomic fountain clock, for example,
or clocks which will be based on Bose–Einstein condensates, will lead to an
increased precision, giving better results of tests of, for example, the gravita-
tional red shift, or will enable the measurement of gravitomagnetic effects for
clocks. Also, new quantum devices like atom interferometers or interferometers
with Bose–Einstein condensates will give much better results while probing the
gravitational field. And, last but not least, clocks will have an application in
establishing a global reference system which is used for the GPS (Global Posi-
tioning System) and for telecommunication.

From the theoretical point of view all these experiments are highly interest-
ing and the new results will stimulate the effort of unifying the four interactions
and/or finding a consistent combination of gravitation theory and quantum the-
ory, i.e., a quantum gravity theory. It is a general feature of such generalized
theories of gravity that extra scalar interactions emerge accompanying the grav-
itational interaction. As one consequence they lead to a violation of the Equiva-
lence Principle. Moreover, anomalous spin interactions may arise in that context.
Therefore, tests of gravity may be at the same time tests of our microscopic view
of the world.

Experiments are designed for testing the predictions of a theory as well as for
testing the foundations of theories. In these proceedings both aspects are repre-
sented. The Lense–Thirring effect and gravitational waves are two of the main
predictions of General Relativity which have not yet been confirmed directly or
with convincing precision. As far as the foundations of General Relativity are
concerned, we deal with the test of the Equivalence Principle which is at the very
heart of the geometric nature of General Relativity. This principle is character-
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istic for this kind of interaction. Other topics in this volume are experiments
with clocks that measure the universality of the gravitational red shift. A vio-
lation of this universality implies the existence of more than one gravitational
interaction. In addition, since the most precise clocks are atomic clocks, this
class of experiments also yields information about the action of gravity in the
quantum domain. Therefore, the application of new quantum-based devices, like
atomic interferometers, has been examined for measurements of gravitational in-
teraction. These and other devices seem to be very promising for increasing the
experimental precision considerably. Thus, the effects of gravitation on quantum
systems with spin are part of these proceedings. All these attempts will provide
a better experimental foundation for the theory of gravity.

Accordingly, our meeting about Gyros, Clocks, Interferometers, ... : Testing
General Relativity in Space held from 21 to 27 August 1999 in Bad Honnef and
these proceedings are devoted to these topics:

• The Lense–Thirring effect
• The detection of gravitational waves
• Testing the Equivalence Principle
• Clocks and rods in gravitational fields
• Quantum tests of gravity
• Electromagnetic field and gravity

We want to present a review of the status of experimental gravity at the
beginning of the 21st century. In doing so, we first tried to give a theoretical
understanding of the various effects followed by reports about the status of
the various experimental projects. We got the impression that this combination
of theoretical and experimental talks gave a more complete picture of what
is going on and contributed to the mutual understanding of theoreticians and
experimentalists.

Finally, we would like to express our gratefulness to theWE–Heraeus Founda-
tion for financing this meeting and the Deutsche Forschungsgemeinschaft (DFG)
for giving support to many of our colleagues from Eastern Europe.

Konstanz and Düsseldorf, Stanford, Cologne Claus Lämmerzahl
October 2000 Francis Everitt

Friedrich W. Hehl
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53121 Bonn
Germany
wex@MPIfR-Bonn.MPG.de

Paul W. Worden
W.W. Hansen Experim. Physics Labs
Satellite Test of the Equivalence Principle
(STEP)
Stanford University
Stanford, CA 94305-4085
USA
worden@step.Stanford.EDU

J. von Zameck Glyscinski
Institute of Solid State Physics
Universität Jena
Helmholtzweg 5
07743 Jena
Germany
zameck@dpserv1.ifk.uni-jena.de



An Overview of Solar System Gravitational
Physics: The Theory–Experiment Interface

Kenneth Nordtvedt

Northwest Analysis
118 Sourdough Ridge, Bozeman, MT 59715, USA

Abstract. If the gravitational metric tensor field of Einstein’s General Relativity is
supplemented by other long range, very weakly coupled interaction fields, then Gen-
eral Relativity’s Equivalence Principle foundations are violated, or its post-Newtonian
(1/c2 order) structure is altered, or both. Space experiments test for and measure such
possibilities; presently universality of free fall is confirmed to about a part in 1012, and
no deviations of post–Newtonian metric gravity from general relativity are seen down
to the few parts in 104 level. Future experiments in space can significantly increase
the precision to which fundamental physical law is probed. In particular, transponded
interplanetary laser ranging can measure presence of metrically coupled scalar fields in
gravity with two or three orders of magnitude higher precision than past experiments,
and can begin to measure the second post–Newtonian (1/c4) structure of gravity. A
space–based experiment of the universality of free–fall (STEP) can detect additional
interactions of a non–metric nature with five or six orders of magnitude higher precision
than today’s experiments.

1 Introduction

In General Relativity theory the gravitational interaction between matter is
transmitted via the ten components of a symmetric tensor field gµν(r, t). While
the space and time gradients of these ten potentials determine the local gravi-
tational equations of motion of matter, the comparative values of the potentials
between different locations also establish global relationships between the rates
of clocks and spans of rulers which are substantially separated from each other.
This creates, not simply deforms, the metrical properties of space and time —
the cosmic arena — which are not a priori or by default Euclidean, but rather are
dynamical and dependent on the distribution of matter throughout the cosmos
and the gravitational field for their existence [1]. This historical progression in
our understanding of the the cosmic arena’s nature — from Newton’s separate
and rigid absolute time and absolute Euclidean space, to Minkowski’s united, but
still globally rig id space–time arena, to the metric gravity field’s creation of a
dynamic arena shaped by its material content — is illustrated symbolically by

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 3–14, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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the sequence of matrices

1 +

1 0 0
0 1 0
0 0 1

 =⇒


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 =⇒


gtt gtx gty gtz
gxt gxx gxy gxz
gyt gyx gyy gyz
gzt gzx gzy gzz


‘rigid’ time + ‘rigid’ space ‘rigid’ space–time space–time arena field

(1)

Various experiments in space have contributed to the systematic mapping
out of the long range gravitational interaction in the presence of source mat-
ter distributions of ever–increasing generality and complexity. The experimental
goals for the future are not only to continue improving the precision of this map-
ping, but also to deliberately search for any additional long range force fields
which may supplement Einstein’s tensor gravity by acting between bodies and
thereby alter the details of the total in teraction.

The major achievements of physics in the 20th century depend not only on the
two major revolutions of relativity and quantum physics and their applications,
but also on the elimination of action–at–a–distance from physical law and its
replacement with the field theory of interaction — that matter at one location
acts as source of certain dynamical fields, which once produced then propagate in
space and time, and then interact with other matter located elsewhere. Maxwell’s
equations for the electromagnetic field in presence of sources, plus the force law
of Lorentz which gives the response of charges (sources) to those fields, formed
the breakthrough model for this paradigm over a century ago

∇ ·E = 4π ρ(r, t) , ∇ ·B = 0 ,

∇×B =
4π
c
j(r, t) +

1
c

∂E

∂t
, ∇×E = −1

c

∂B

∂t
, (2)

dp

dt
= e

(
E(r, t) +

1
c
v ×B(r, t)

)
,

and includes all the basic ingredients for this new conceptual framework. A
compact way to formulate the electromagnetic interaction is in terms of a vector
field of potentials Aµ(r, t), µ = 0, x, y, z

Ei = −∂Ao

∂xi
+

∂Ai

c∂t
, Bi =

∑
j,k

eijk
∂Ak

∂xj
, (3)

with indices i, j, k ranging over the three spatial dimensions, and eijk being the
anti–symmetric permutation matrix. Today’s so–called Standard Model for the
electromagnetic, weak, and strong nuclear forces in matter is built upon the re-
peated use of vector fields of interaction, with there being three additional fields
for the weak force, W (3)

µ , and eight ’gluon’ fields for the strong force, G(8)
µ . These

vector fields have been successfully integra ted into quantum physics (involving
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the careful handling of still not fully understood renormalizable infinities), but
the metric gravitational field of General Relativity has not been so integrated,
which is one hint that something is still missing in our theory of gravity. (It
should be noted, however, that the post–Newtonian ’near fields’ of gravity which
accompany source bodies contribute to matter’s quantum mechanical Hamilto-
nian; otherwise body center–of–mass wave packets would not follow the post
–Newtonian classical general relativistic trajectories which we observe in various
experiments.)

The simplest type of field, the scalar field, presently plays no role in modeling
observed phenomena, yet theoretical speculations beyond the Standard Model
suggest it should be a natural partner of the metric tensor gravitational field.
A scalar field can, in fact, combine with the tensor field to jointly produce a
hybrid metric field for the space–time arena. Because of an interesting equality
between static–limit tensor and scalar source strengths for bodies of negligible
external world stresses, gravi tational self–energy, and deviation from internal
equilibrium, ∫

T 0
0 d3x =

∫
T d3x (4)

(Tµ
ν is matter’s stress–energy tensor, T is its trace), such bodies fulfill compos-

ition–independence of free fall rates and clock rate shifts in presence of other
bodies. Presence of the scalar field in this case only manifests itself in post–
Newtonian phenomena. The search for a ’metric’ scalar field in gravity has
therefore been, and continues to be, one of the main themes of experimental
gravity in space.

A scalar field can not only alter the phenomena of metric gravity if coupled
to matter in the special manner indicated above, this field also has the possibility
(indeed the probability, according to string theorists!) of coupling differently or
selectively to the various (electromagnetic, weak, or nuclear) scalar attributes of
matter, and consequently violating Einstein’s Equivalence Principle by produc-
ing composition–dependence of both gravitational free fall rates and clock rate
shifts in proximity to m atter (gravitational ’red–shift’).

Other very weakly coupled, long range force fields may also be present, wait-
ing for discovery in more precise space experiments. For instance, a vector field
Bµ coupled to some combination of baryon and lepton number would also gen-
erate composition–dependent accelerations of bodies.

From what has been experimentally confirmed to date, it is not likely we’ll
find a breakdown (in long range phenomena) of Einstein’s general relativistic
equations for the dominant tensor field gravitational interaction

Gµ
ν = κ Tµ

ν , (5)

but this still leaves open the question of whether there are any supplementary
long range and very weak interactions between bodies?
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2 Testable Models for Experiments

The ingredients for modeling the space experiments consist primarily of the
equations of propagation of electromagnetic signals, the rate equations of clocks,
and the equations of motion for bodies. The totality of all the long range interac-
tions in physical law will contribute to one or more of these dynamical equations.
Clocks and bodies exist with a wide variety of internal compositions and struc-
ture. This affects how they can couple to external force fields, and our models
must take this into account. Some useful representations of these key dynamical
equations are as follows:

c(r, t) = c∞

(
1− (1 + γ)

U(r, t)
c2

+ . . .

)
, (6)

dτc =
(
1− 1

2
v2

c2
− αc

U(r, t)
c2

+ . . .

)
dt , (7)

in which U(r, t) is the Newtonian potential function of proximate matter

U(r, t) = G
∑
i

Mi

|r − ri| . (8)

The gravitational clock rate shift parameter αc has the universal, composition–
independent value of one in metric theories, but more generally it may depend
on the nature of the clock if other interaction fields supplement the tensor metric
field of general relativity. The Eddington parameter γ which appears in the light
propagation equation equals one in general relativity but has smaller values
in scalar–tensor metric gravity, for example. The light equat ion leads to two
measurable phenomena: the deflection of light’s direction of travel through angle

δθ = 2(1 + γ)
GM

c2D
(9)

when making a complete passage by a central body M with distance of closest
approach D, and a delay in integrated time of propagation

δt ∼= (1 + γ)
GM

c3
ln
(
4R1R2

D2

)
, (10)

when a signal travels between two sites at distances R1 and R2 from the central
body and passes at distance of closest approach D from that body. In the last
year or so, analysis of very long baseline interferometry (VLBI) observations of
deflections of light from very many astronomical sources has produced the most
precise measurement of the light propagation equation,

|γ − 1|VLBI ≤ 6× 10−4 (2 σ) , (11)

whereas the time delay effect had for the previous couple decades supplied the
premier experimental data for this measurement.
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Accepting that local gravitational physics is Lorentz–invariant and Lagrange-
ian–based with energy, momentum, and angular momentum conservation laws,
foundations empirically established by the very space experiments under discus-
sion in this report, the gravitational equations of motion for the general N–body
solar system, valid not only in Einstein’s pure tensor gravity, but also generalized
to represent plausible alternative metric theory possibilities by introduction of
the two Eddington para meters γ and β, is

A ai =

(
1 +

Ġ

G
(t− t0)

)(
M(G)
M(I)

)
i

∑
j

gij

B − (2β − 1)
∑
j,k

(
µk
rik

+
µk
rjk

)
gij

C +
∑
j

((2γ + 2) vi × (gij × vj) + (2γ + 1) gij · vj vi)

D +
∑
j

(1
2
(
(2γ + 1)v2i + (2γ + 2)v2j − 3(vj · r̂ij)2

)
gij

− (2γ + 1)
(
(gij · vj)vj + (gij · vi)vi

))
E +

1
2

∑
j

µj
rij

((4γ + 3)aj + (aj · r̂ij)r̂ij)

F − 1
2
v2i ai − (ai · vi)vi − (2γ + 1)

∑
j

µj
rij
ai , (12)

with i, j, k = 1, . . . , N , vi = dri/dt, ai = dvi/dt, and rij = |ri − rj |. A factor
1/c2 multiplies all the post–Newtonian lines B through F , but has been set
equal to 1 to simplify presentation. This total equation is very close to Eq. (1)
of reference [4]; I have simply organized the terms of the equation of motion
by type on separate named lines A, . . . , F for purposes of discussion (see page
321). And on line F , for purposes of stressing the inertial nature of these forces,
I have retained the proportionality of these forces to the body acceleration ai
which in reference [4] are set equal to their Newtonian values. µj = GMj are the
body gravitational mass parameters, and the Newtonian acceleration functions
are indicated

gij =
µj
r3ij

rji . (13)

Setting γ = β = 1, all body factors M(G)/M(I) = 1, and G equal to a con-
stant as in general relativity, this becomes the equation of motion which JPL’s
computer ephemeris uses to integrate and produce the default orbits of the planets
and satellites in the solar system. Deviations from this nominal general relativis-
tic case then produce experimental signals proportional to scientific parameters
γ − 1, β − 1, M(G)/M(I) − 1, dG/Gdt, etc., which can then be measured in
various experim ents by least squares fit type data analysis techniques.
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Two necessary modifications of the Newtonian acceleration appear in line
A of Eq.(12). In alternative theories of gravity the local Newtonian coupling
strength G will generally be changing in some proportion to the universe’s Hub-
ble expansion rate H [2]

G(t) ∼= G0 + Ġ (t− t0) + . . . , with Ġ/G ∼ (4β − 3− γ)H . (14)

In such theories the necessary and consistent application of the total equation
of motion to the internal gravitational structures of the bodies and their inter-
actions with the gravity of the external world also alters the gravitational to
inertial mass ratio of each celestial body in proportion to its internal gravita-
tional binding energy [3]:(

M(G)
M(I)

)
i

= 1− (4β − 3− γ)
1

2Mic2

∫
Gρ(xi)ρ(yi)
|xi − yi| d3xi d

3yi . (15)

Celestial bodies, in this general situation, will therefore not fall in gravitational
fields at test body rates. Measuring this ratio for the Earth by fitting the lunar
laser ranging (LLR) data has been one of the key methods for measuring the
metric theory, Eddington coupling parameters γ and (especially) β which both
take values different from their general relativity values of one in scalar–tensor
theories [4,5].

Different terms of the general equation of motion given by Eq.(12), either
individually or collectively, play roles in determining the different so–called ‘ef-
fects’ of post–Newtonian gravity — perihelion precession, deSitter precession,
Lense–Thirring precession, etc. But it must be stressed that all effects must
be calculable from a common underlying equation of motion valid for the gen-
eral case. The equation of motion can not be altered to ‘fit’ one effect without
considering how that affects the ‘fit’ to other observed effects.

It is worthwhile to exhibit the static limit force produced by an additional
long range, very weakly coupled force

F i = Ki ∇i

∑
j

Kj

Rij
e−µRij . (16)

The coupling strengths of this interaction, Ki, generally will not be proportional
to the mass–energy contents of the interacting bodies, causing violations of key
predictions of the Equivalence Principle. For example, two bodies A,B will now
accelerate at different rates toward another source body S located at distance
R away

|aA − aB |
|gS | =

KS

GMS

(
KA

MA
− KB

MB

)
(1 + µR) e−µR . (17)

And atomic clocks whose frequencies are determined by the energy differences
between two quantum states m,n,

fnm =
En − Em

2π�
(18)
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will now generally acquire anomalous, clock–dependent frequency shifts when in
proximity to a source body, thereby modifying the universal rate shifts predicted
by the Equivalence Principle and metric theories of gravity

δfnm
fnm

= − GMS

c2R

(
1− KS

GMS

(
Kn −Km

Mn −Mm

)
e−µR

)
. (19)

These expressions for the two types of Equivalence Principle violations al-
low comparisons to be made between experiments involving clocks and those
measuring gravitational free–fall rate differences among assorted materials, with
the purpose of noting their relative abilities to detect any new interaction with
coupling strengths Ki. These expressions can also guide choice of experimental
materials and the design of special clocks in order to maximize experimental
sensitivities to specific models for ne w interactions.

Even if the two quantum levels of an atomic clock have common coupling
strengths Kn = Km, absolute clock rate shift experiments could measure the
presence of such an additional interaction by comparing the strength of the
clock shifts now proportional to only GMS to the effective Newtonian coupling
strength of the same central body with some planet P , which has now become

ΓS = GMS + KS
KP

MP
(1 + µR)e−µR . (20)

If the additional interaction given by Eq. (16) has finite range, then its con-
tribution to the periastron precession rate of orbits of size comparable to the
interaction range 1/µ provides a very sensitive means for its detection. For or-
bits of small eccentricity, the extra acceleration term from Eq. (16) generates an
orbital precession rate of

δω(per)
ω(orb)

=
1
2

KiKj

GMiMj
(µR)2 e−µR . (21)

The orbits of satellites and celestial bodies of size from about an Earth radius
and up to the orbit of Mars have been measured with high precision using laser
or radar ranging techniques. The absences of any anomalies in the precession
rates of the various orbits fit to the data give very strong constraints on the
presence of finite range interactions. These constraints are shown in Fig. 1 by
the four labeled curves, and they apply for the supplementary interaction being
either metric or non–metric. The s cientific significance of orbital precession
rate measurements has not been fully appreciated in the past, and their future
improvement over the total range of available orbits can be an effective way to
enhance the search for new interactions.

The full content of the equation of motion given by Eq. (12) includes the
grouped contributions to the equation given in lines marked A through F . A
rich variety of post–Newtonian phenomena results, including

• rescaling of the inertia of a body or its mass elements in proportion to the
strength of the gravitational potential produced by the other bodies and
mass elements of the system (line F ),
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• accelerations of a body due to motion of either the acted–upon body — v2i
— or the acting body — v2j (line D),
• non–linear accelerations proportional to the second power of source body
masses or to the product of source (acting) bodies and acted–upon body
masses (line B),
• gravito–magnetic accelerations proportional to the velocities of the acted–
upon as well as the acting bodies — vivj (line C),
• inductive accelerations of a body i in proportion to the acceleration aj of
other nearby bodies j (line E).

From the entire collection of experimental observations, these different parts
of the total equation of motion are all presently confirmed and measured to bet-
ter than a part in 103 precision, and as well the local Lorentz invariance and
conservation laws foundations are empirically established to even higher preci-
sion. The LLR experiment has proven to be a particularly comprehensive probe
of the equation of motion; there are measured lunar orbit perturbations affected
by every part of the general equation (A, . . . , F ). By contrast, the initial historic
success of general relativity to explain the anomalous precession of perihelion for
Mercury’s orbit results from the special case of the general Eq. (12) in which a
single test body (Mercury) moves in the static, spherically symmetric gravity of
the Sun(

1 +
1
2
v2 + (2γ + 1)

GM

r

)
a+ v (v · a) (22)

=
(
1− (2β − 1)

GM

r
+ (2γ + 1)v2

)
g − (2γ + 1)v (v · g)

(here again, 1/c2 has been set equal to one in the post–Newtonian terms), and

g = −GM

r3
r . (23)

3 Lunar Laser Ranging

Modeling of the LLR experiment, which includes a moving and accelerating
Moon orbitting a moving and accelerating Earth, both bodies in the combined
gravitational field of the Sun, of each other, and of themselves, results in LLR be-
ing a comprehensive laboratory for testing the total structure of the gravitational
equation of motion for bodies (LLR also tests the more general parameterized
metric field equation of motion developed by Will and Nordtvedt [8,9]). The
measured Earth–Moon range is sensitive to literally every one of the phenomena
in the body equation of motion described above. From the fit of the range data,
several types of terms in the general relativistic equation of motion are today
confirmed with precisions of at least a few parts in 104. But there are three LLR
measurements in gravitational physics which are of particular scientific interest.
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1. Earth and Moon are found to fall toward the Sun at equal rates to three
parts in 1013 precision. This confirms both the non–linear self–coupling of
gravity to itself,

|β − 1|LLR ≤ 2× 10−4 (24)

and the composition–independence of gravity’s coupling to matter (Earth
and Moon have somewhat different average chemical compositions).

2. Inertial space in the locality of the Earth–Moon system is found to rotate
relative to distant inertial space at the rate predicted in General Relativity
— deSitter’s geodetic precession — to precision of three or four parts in a
thousand.

3. Newton’s G shows no time variation at the few parts in 1012 per year level.

For more detail on the LLR experiment and theory, see the other contribution
to these proceedings.

4 Geodetic Precession and NASA’s Gravity Probe–B

When a system moves non–radially at velocity V through the gravitational field
of an external body M , the accelerations ai of the system’s individual bodies
moving in that system at the additional velocities vi experience Coriolis–like
acceleration terms equal to

δai = 2
(
γ +

1
2

)
GM

c2R3 (R× V )× vi . (25)

This indicates that the local inertial frame moving with that system rotates
with respect to the distant inertial frame at the deSitter geodetic precession rate
(about 19.2 mas/year)

ΩdS =
(
γ +

1
2

)
GM

c2R3 R× V . (26)

LLR presently measures this rotation of local inertial space to good precision
through its .07 mas/year fit of the perigee precession of the lunar orbit. NASA’s
GP–B mission of Earth–orbitting gyroscopes, scheduled to be launched early
2002, is designed to measure this precession due to motion through Earth’s
gravity with two orders of magnitude more precision; if successful this will yield
a very significant improvement in our knowledge of the fundamental metric field
Eddington p arameter γ which enters Eq.(26).

5 Interplanetary Laser Ranging

Two decades ago NASA’s Viking mission to Mars included transponded radar
ranging to both a spacecraft orbitting that planet and a lander. From the indi-
vidual range measurements of about 7 meters precision, and relying especially on
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those observations made when the ranging signals passed close to the Sun, the
propagation time delays given by Eq. 8 were fitted, and the Eddington γ param-
eter was measured to precision of 2× 10−3. Transponded laser ranging between
Earth and Mars co uld be performed in a future mission with precision compara-
ble to that of LLR — of order centimeters. By fitting the laser pulse propagation
times, and also taking into account the perturbations of the Mars and Earth or-
bits which emerge from the relativistic equation of motion, both parameters γ
and β can be measured to a part in 106. For this purpose, a key perturbation
results from the 4–body problem involving Sun, Jupiter, Earth and Mars. If the
Sun accelerates anomalously toward Jup iter because its gravitational to inertial
mass ratio differs from one at either the first or second post–Newtonian order (χ
is a collection of second post–Newtonian order metric field expansion coefficients
which sum to zero in general relativity),

M(G)
M(I)

= 1− (4β − 3− γ)
G

2Mc2

∫
ρ(x)ρ(x′)
|x− x′| d

3x d3x′

+χ
G2

Mc4

∫
ρ(x)ρ(x′)ρ(x′′)
|x− x′||x− x′′|d

3x d3x′ d3x′′ + ...

∼= 1− 4× 10−6 (4β − 3− γ) + 7× 10−11 χ , (27)

then the orbit of an inner planet is polarized toward Jupiter by amount

δrp ∼=
(
M(G)
M(I)

− 1
)
S

MJ

MS

3ΩP −ΩJ

2ΩP −ΩJ

ΩJ

ΩP −ΩJ
RJ , (28)

in which ΩP and ΩS refer to the orbital frequencies of the planet and Jupiter,
respectively, andRJ is Jupiter’s orbital radius. The Earth and Mars polarizations
then produce a unique time–dependent Earth–Mars range signal. As seen in
Eq.(28), replacing Mars by a more distant asteroid as the ranging target would
enhance the effect and should be considered as a mission option. Laser ranging
to a space–based gravity wave observatory like LISA will also show this orbit al
perturbation. Although this may be the only relativistic effect in the solar system
involving second post–Newtonian order (1/c4) features of the gravitational field
which can be measured in the near future, theoretical work suggests that the
precision measurement of the first post–Newtonian parameters γ and β which
will result is of more importance than the novel but low precision measurement of
the second post–Newtonian order parameters. An experiment at this level could
be a decisive type of solar system experiment for probing metric gravity. It has
been shown that scalar–tensor metric gravity, which during the early universe
may have contained comparable coupling strengths of these two interactions with
matter, would within some general scenarios find the cosmic background scalar
field dynamically evolving as the universe expands toward a field value where the
scalar field’s coupling to matter measured by 1−γ and 1−β has naturally become
very small, but not exactly zero, in our era [6]. (A similar scenario has been
studied in non–metrically coupled scalar–tensor theories, giving a motivation
for testing, for example, the composition–independence of gravitational free fall
beyond the present–day part in 1012 confirmation [7].)
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Fig. 1. The solid curves marked “LAGEOS”, “LLR”, “Mercury”, and “Mars” show
constraints on the strength of any metric or non–metric force which may supplement
general relativistic gravity, plotted as function of Yukawa range. These constraints re-
sult from measurements of the periastron precession rates of the corresponding orbits.
The LLR curve is double humped, reflecting the roles of both Earth and Sun in de-
termining the lunar orbit. The dashed curves marked “LLR–EP” and “L LR (Metric
EP)” are constraints from the measurement of the equality of the Earth’s and Moon’s
acceleration rates toward the Sun. This result has separate interpretations for the cases
of the supplementary force being metric or non–metric, and these constraints extend to
‘infinite’ range, i.e. inverse–square. The dashed curve marked ”STEP” shows the level
of very weak non–metric force which can be detected by that future space experiment.

6 A STEP Experiment

From laboratory experiments and lunar laser ranging, we presently know that
differently composed bodies accelerate in a gravitational field at rates identical
to about a part in 1012. From Eq.(12), and noting that various attributes per
unit mass of atoms Ki/Mi fractionally differ by about a part in 103 as one selects
from different regions of the periodic table of elements (baryon number, nuclear
electrostatic energy, etc.), it can be concluded that most any supplementary long
range interaction must be at least a factor of about 109 weaker than the strength
of gravity (for certain types of coupling of the supplementary field, the constraint
would be stronger) ∣∣∣∣ KiKj

GMiMj

∣∣∣∣ ≤ 10−9 . (29)
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This experimental constraint is shown by one of the curves in Fig, 1. Exploit-
ing several favorable features of the experimental environment in an orbitting
spacecraft, a STEP (Satellite Test of the Equivalence Principle) mission is being
designed to measure differences in the gravitational free fall rates of a variety
of elements toward Earth with precision of a part in 1018. This will extend
the search for new long range interactions by five or six orders of magnitude
higher precision for interaction ranges from an earth radius up to infinity (in-
verse square). This STEP goal is shown by another curve in Fig.1. Present–day
investigations of unified theories beyond the Standard Model, such as string
theories, suggest that such additional interactions may exist, especially a scalar
field coupled selectively to the different scalar attributes of matter. A STEP–like
experiment is one of the very few ways we may be able to search for and possi-
bly find consequences of these under lying theories in our ‘low energy’ realms of
experience. Even a discovery by STEP of no composition–dependent accelera-
tions at these incredible levels of precision would place strong constraints on and
guidance for the theoretical investigations working toward unification of physical
law.
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Abstract. The Newtonian gravitational constant G was the first known fundamental
constant of physics. Nevertheless, the measurement of its value still seem to be in
a rather sad shape. Recently, the CODATA Task Group on Fundamental Constants
recommended a preliminary value of G with a relative uncertainty of 0.15%. This is
more than ten times larger as the previous recommendation!

In the first part of this lecture, a brief summary is given of recent experimental
efforts to determine G. The second part is a description of our experiment at the
University of Zürich.

We use a beam balance to measure the gravitational forces of large field masses
(13.5 × 103 kg mercury) on 1 kg test masses. A first result with an uncertainty of
220 × 10−6 has been published recently. Presently we are working to improve the
experiment.

1 Introduction

Henry Cavendish published in 1798 – more than 200 years ago – his famous
paper titled “Experiments to determine the density of the earth” [1]. This ex-
periment is the first laboratory experiment to determine the Newtonian gravi-
tational constant G. Cavendish employed a torsion balance, a device which, up
to now, is widely used to measure G. Although the measurement techniques im-
proved considerably during the last 200 years, CODATA1 in 1998 recommended
an uncertainty of 1500 ppm and a value of G = 6.673(10) × 10−11m3kg−1s−2

[2,3].
Compared to the previous CODATA recommendation of 1986 [4], the uncer-

tainty was increased by more than a factor of ten. The reason for this surprising
step can be seen in Fig.1, showing the results of recent measurements. There
are large and apparently not well understood discrepancies. The CODATA task
group on Fundamental Constants decided to recommend the old 1996 value of
G, but to drastically enlarge the recommended uncertainty.

On the positive side, these discrepancies provided motivation for many new
experiments. Several of these new results were presented at a conference held in
London 1998 to celebrate the 200th anniversary of the Cavendish experiment.
1 The Committee on Data for Science and Technology of the International Council of
Scientific Unions.

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 15–28, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Fig. 1. Latest results of published G experiments and the recommended CODATA
values of 1986 [4] and 1998 [2,3].

2 Currently Running Experiments

We will restrict our discussion to earth bound experiments. There are also in-
tentions to perform measurements of G in space [5]. However, these efforts seem
to be in an early stage and are not yet fully funded.

The present experiments are conveniently divided into two groups, those
using a torsion balance and other experiments using a variety of techniques. In
all experiments there are movable field masses producing an attractive force on
relatively small test masses. Many techniques have been developed to sense the
effect of these small forces. We will first discuss techniques employing a torsion
balance.

Cavendish operated his torsion balance in the static deflection mode. A
dumbbell was suspended by a torsion wire and the angle of deflection was mea-
sured, when two field masses were brought nearby. This method is not used
anymore. Instead three other techniques are employed today.

First, there is the time of swing method. The angular frequency of a torsion
pendulum is measured with and without field masses. The torque caused by
the gravitational attraction of the field masses increases the angular frequency
when compared with the free pendulum. The difference of the squared angular
frequencies is proportional to the second derivative of the gravitational potential
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Table 1. Summary of the presently running experiments employing a torsion balance
to determine the Newtonian gravitational constant.

group method, status value rel.
features for G uncer-

[10−11m3 tainty
kg−1s−2] [ppm]

M. P. Fitzgerald, force compensation, working on 6.6746 [12]a 150
T. R. Armstrong [12], electrometer improvements 6.6742 [12]b 105
New Zealand compensated
J. H. Gundlach[13], acceleration, under
Washington optimized mass construction

arrangement
O. V. Karagioz, time of swing published 6.6729 75
V. P. Izmailov [27], results
Moscow
J. Luo time of swing published 6.6699 105
et. al [29] results
People’s Rep. of China
G. G. Luther, time of swing old published [31] 6.6740 105
C. H. Bagley new under constr.
Los Alamos [32]
R. D. Newman, time of swing, under
M. K. Bantel [8], cryogenic, optimized construction
Irvine CA mass arrangement
S. J. Richman time of swing and first 6.683 1700
et al. [11], force compensation results
BIPMa in one apparatus

a Bureau International des Poids et Mesures

U of the field masses [6]:

G =
(ω2

f+g − ω2
f )I

kg
, where kg =

1
G

d2U
dθ2

.

The angle θ is formed by the field masses and the axis of the pendulum and I
denotes the moment of inertia of the dumbbell. This equation is valid under the
assumption that the elastic coefficients of the torsion wire is independent of the
angular frequency. However, in 1995 Kuroda [7] pointed out that inelasticity in
the fiber could produce a systematic shift of the frequency. Newman and Bantel
showed [8], assuming a certain model for the inelasticity, that an upper limit
for the induced relative error of G is given by 1

2Q
−1 + O(Q−2), where Q is the

quality factor of the torsion pendulum. It is thus advantageous to have a Q–
value as large as possible. As Q can be increased by lowering the temperature,
Newmann and Bantel intend to operate their pendulum at the temperature of



18 S. Schlamminger et al.

liquid helium. As shown in Table 1 there are five groups employing the time of
swing technique.

Table 2. Summary of the present running experiments to determine G without using
a torsion balance.

group method, status value rel. uncer-
features [10−11m3kg−1s2] tainty [ppm]

U. Kleinevoß Fabry-Pérot working on 6.6735 432
et al. [30] resonator improvements
Wuppertal (microwaves)
A. De Marchi [17] dynamic first
et al. free pendulum results
Torino
Wei-Tou Ni Fabry–Pérot under
et al. [33] resonator construction
Taiwan (optical)
F. Nolting beam balance working on 6.6749 217
et al. [26] improvements
Zürich
H. Parks Fabry–Pérot under
et al. resonator construction
Colorado (optical)
J. P. Schwarz free fall published 6.6873 1400
et al. [14,15] method results
Colorado

The second technique is called force compensation method. A electromag-
netic force is applied to the torsion pendulum in order to prevent the torsion
fiber from twisting. The electromagnetic quantity, for example the applied volt-
age on an electrometer, is measured. Thus a calibration has to be done, i. e. the
measured electromagnetic quantity must be converted into a mechanical force or
torque. On the other hand, these experiments are static in principle and therefore
should not be affected by inelasticity effects. Two groups have exclusively used
this methods and both results showed large discrepancies [9,10] when compared
to the CODATA value. Although unlikely, one may suspect that this could be
an indication for some fundamental problem. For this reason the group at the
Bureau International des Poids et Mesures (BIPM) [11] built a torsion balance
where both the time of swing and the compensation method can be used. At
present only preliminary measurements with the first method have been per-
formed. The group is working on improvements and it is hoped that a accurate
comparison of the two methods should soon be possible. The group in New
Zealand has discovered a fault in the analysis of their 1995 measurement [10].
In 1999 they reported a corrected value [12] and a new and more precise result.
Both are in agreement with most other results. Unfortunately the experiment of
Michaelis et al. [9] has been discontinued some time ago.
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The third important technique is the so–called acceleration method where the
torsion balance is mounted on a turntable. This turntable is accelerated and con-
trolled by a feedback loop in such a way that the torsion fiber does not twist. The
angular acceleration of the turntable can be measured directly and the torque
produced by the field masses be calculated. Furthermore, the measurement is
static again and the experiments should not be affected by inelasticity. Obvi-
ously, this technique requires high precision turntables and angular encoders.
One such experiment is presently set up by Gundlach [13] at Washington.

Altogether there are at present seven torsion balance experiments, which are
listed in Table 1. Five groups have published a result.

There are presently six experiments measuring G without a torsion balance.
In 1998, J.P. Schwarz published a interesting free–fall experiment [14,15]. The
test mass was a corner cube reflector falling vertically through the center of a
doughnut shaped field mass. The acceleration of the test mass was determined
by tracking its position using an optical interferometer. The force on the test
mass was modulated by periodically moving the field mass in vertical direction.
The field mass was made by tungsten because of its high density. The published
result is given in Table 2.

Three experiments use a Fabry–Pérot resonator. The resonator is formed by
two pendulums which act as test masses. The field masses are moved horizon-
tally. Their gravitational force changes the relative distance of the two pendu-
lums, proportional to the horizontal force gradient. The distance is measured
by the eigenfrequency of the resonator. This technique was pioneered by the
Wuppertal group [16]. They are using microwaves with typically 20 GHz, i.e. a
rather large wavelength compared to the distance change of the two pendulums,
which is about 10 nm. The measurements reported are very precise and the latest
published result (see Table 2) is dominated by systematic uncertainties. There
are two other experiments using this Fabry–Pérot technique. They intend to use
visible light, that is a much shorter wavelength. Both experiments are presently
under construction.

Another interesting experiment is performed by De Marchi et al. in Italy [17].
They exploit the fact that frequencies can easily be measured with very high
precision. A simple pendulum, mounted in vacuum, is used and the frequency
change is measured when a field mass is brought nearby.

The experiment at the University of Zürich uses a beam balance and will be
described in more detail below.

All present experiments not using a torsion balance are listed in Table 2.
A detailed review of the experiments to measure the Newtonian gravitational
constant can be found in [18].

3 The Principle of Our Experiment

The first experiment to measure the gravitational constant with the help of a
beam balance was published in 1879 by J.H. Poynting [19]. Subsequently several
similar measurements were performed but soon this technique was given up in
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Fig. 2. The principle of the experiment. The two field masses are shown in the two
positions as used for measurements.

favor of the torsion balance. In 1983 the first modern beam balance experiment
was done by C. Speake et al. [20] to search for the “fifth force”. The University of
Zürich group used a beam balance in a experiment performed at the Gigerwald
storage lake [21,22]. There, the gravitational constant was measured at an effec-
tive distance of approximately 100 m. Since 1997 we are using a beam balance
to measure G in a laboratory experiment.

The principle of our experiment is shown in Fig.2. There are two cylindrical
field masses and two test masses. The field masses can be moved vertically and
have a central hole such that the test masses can pass through. In position one
the field masses are close together, while in position two they are apart. The two
test masses remain at the same position but can be connected alternately to the
balance.

First the weight difference between the test masses in position one is mea-
sured. Obviously, the weight of the upper test mass is increased by the grav-
itational force of both field masses, while the weight of the lower test mass is
decreased. The weight difference, defined as the difference in the readings of the
balance, weighing first the upper test mass and then the lower test mass, is in-
creased, when compared with weights of the test masses in absence of the field
masses.

In position two the situation is reversed. The weight of the upper test mass
is decreased, while the weight of the lower test mass is increased.
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Fig. 3. Schematic illustration of the force acting on a test mass on the axis of a field
mass with the form of a hollow cylinder.

The second difference, that is the difference of the weight differences for field
mass positions I and II, is independent of small but unavoidable mass differences
of the two test masses and directly proportional to G. All effects which are the
same for the two test masses, such as tidal forces and zero–point drifts of the
balance, cancel already in the first difference.

The force field of a cylinder with a central hole has an advantageous feature
which is exploited in this experiment. The z–component of the force Fz, produced
by one cylinder and acting on a small test mass on the symmetry axis, is shown
in Fig.3. There are two local extrema near both ends of the cylinder, which in
fact are saddle points. This is shown in more detail in Fig.4, where Fz is plotted
as a function of the radial distance and the z–coordinate. The plot was generated
assuming the dimensions of one field mass as used in the experiment. Clearly
the accurate position of a test mass is quite uncritical if placed near the saddle
point. For an assumed position error of 1 mm, the force error would be of order
10 ppm.

4 The Experimental Setup

The experiment is located in a 4.5 m deep pit inside an experimental build-
ing at the Paul–Scherrer–Institut (PSI). The necessary thermal and mechanical
stability is provided by the thick concrete walls of the pit. The experiment is
divided vertically in two parts separated by a working platform. As shown in
Fig.5, the field and test masses are located in the lower part. The upper part
of the experiment houses the balance, the electronics and the vacuum pumps.
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rel. dev. 

Fig. 4 .  T h e  r e l a t i v e  d e v i a t i o n  of t h e  z-component of t h e  force w i t h  r e s p e c t  t o  i t s  value 
a t  t h e  s a d d l e  p o i n t .  T h e  force is g e n e r a t e d  by one homogeneous c y l i n d r i c a l  field m a s s  
(see t e x t ) .  

B o t h  p a r t s  a r e  mechanically a n d  t h e r m a l l y  i n s u l a t e d  from each o t h e r  a n d  each 
r o o m  h a s  i t s  own t e m p e r a t u r e  s t a b i l i z a t i o n  s y s t e m .  

T h e  b a l a n c e  is placed o n  a  massive g r a n i t e  p l a t e ,  s u p p o r t e d  by two s t e e l  
g i r d e r s .  T h e y  a r e  a t t a c h e d  t o  t h e  wall of t h e  p i t  a n d  have n o  d i r e c t  mechanical 
c o n t a c t  t o  t h e  working p l a t f o r m .  T h e  b a l a n c e  a n d  t h e  two t e s t  masses a r e  inside 
a  v a c u u m  s y s t e m  c o n s i s t i n g  of a  c h a m b e r  a n d  a  long t u b e  passing t h r o u g h  t h e  
c e n t r a l  hole of t h e  field masses. At present t h e  p r e s s u r e  in t h e  s y s t e m  is t y p i c a l l y  
l o p 4  P a .  I n  t h a t  way p r o b l e m s  d u e  t o  convection a n d  buoyancy a r e  avoided. 

T h e  m o s t  i m p o r t a n t  p a r t  of t h e  e x p e r i m e n t  is t h e  b a l a n c e .  I t  is a  modified 
Mettler-Toledo AT 1006 c o m p a r a t o r  b a l a n c e .  T h e  commercial version of t h i s  
b a l a n c e  was designed for a  high precision comparison of 1  kg s t a n d a r d  masses. 
A  s c h e m a t i c  view is shown i n  F i g . 6 .  I t  is a  single-pan, flexure-strip b a l a n c e  w i t h  
a  servo-controlled b e a m .  A  weight change o n  t h e  cantilever is c o m p e n s a t e d  by a  
m a g n e t i c  s y s t e m ,  consisting of a  p e r m a n e n t  m a g n e t  a n d  a  coil m o u n t e d  o n  t h e  
b e a m .  T h e  c u r r e n t  t h r o u g h  t h e  coil is m e a s u r e d  a n d  c o n v e r t e d  i n t o  a  weight. A  
more d e t a i l e d  d e s c r i p t i o n  m a y  b e  found i n  [23]. T h e  original resolution of t h e  
b a l a n c e  was 1  pg a n d  h a s  been changed t o  a  present value of 1 2 . 5  n g .  C u r r e n t l y  
we achieve a  r e p r o d u c i b i l i t y  of 200 ng which we define t o  b e  t h e  s t a n d a r d  devi- 
a t i o n  of 10 weight c o m p a r i s o n s .  T h e  b a l a n c e  is c a l i b r a t e d  by p u t t i n g  s m a l l  a n d  
precisely known s t a n d a r d  masses ( p r e s e n t l y  two 0 . 5  g )  on t h e  c a n t i l e v e r .  F i n a l l y  
t h e  b a l a n c e  r e a d i n g  is c o n v e r t e d  i n t o  a  force using t h e  m e a s u r e d  value of t h e  
local gravity, g = 9.8072335(6) m s p 2 .  
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Fig. 5. The experimental setup. Legend: 1=chamber, 2=thermally insulated chamber,
3=the balance inside of the vacuum chamber, 4=concrete walls of the pit, 5=granite
plate, 6=steel girders which support the balance, 7=vacuum pumps, 8=gear assem-
bly, 9=motor, 10=working platform, 11=spindle, 12=steel girder of the main support,
13=upper test mass, 14=field masses, 15=lower test mass, 16=vacuum tube.

The field masses are vessels made of stainless steel and can be filled with a
liquid. A liquid is used, because of its high homogeneity. Each vessel has a volume
of 500 l and a mass of 800 kg when unfilled. The outer diameter of the field mass
is 1046mm, the inner diameter 100mm and the height 700mm. Measurements
with empty and with water filled vessels have been performed and first results
were reported in [24,25].

At present the vessels are filled with mercury. The total filled in mass (13.5×
103 kg) was determined with a relative uncertainty of 2 ppm. A detailed descrip-
tion of the filling procedure may be found in [23].

The 1 kg test masses were made from copper and are gold plated. Small sam-
ples were taken from the same piece of material as the test masses. The magnetic
susceptibility of the samples was measured and found to be sufficiently small
such that magnetic forces should be negligible. Also the density homogeneity
was checked and at the level of 2× 10−4 no differences were found.
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Fig. 6. Schematic view of the balance.

5 The Measuring Procedure and First Results

The whole measuring procedure is fully automated and computer controlled.
Initially the field masses are in position one, that is together. One test mass is
suspended on the balance and weighed. This lasts typically 2 minutes. Then the
test mass is lifted from the balance and at the same time the other test mass is
connected to the balance. This is done, using a special exchange device, in such
a way that the total load on the balance does not change by more than typically
a few grams. The second test mass is also weighed and then the sequence above
is repeated typically 20 times. Next a standard mass is put on the balance for
calibration. Then the vessels are moved in position two, that is apart and the
complete weighing procedure above is done again. All taken together this forms
one cycle of the measurement (see Fig.7), which is then repeated indefinitely.
Typical data are shown in Fig.8. Plotted is the first difference as a function of
time. The amplitude of the rectangular signal is the second difference and has a
approximate value of 0.8mg for mercury filled vessels. The inset shows the data
of the last half–cycle with the vertical scale expanded by a factor 500.

Measurements with empty and water filled vessels were carried out during
1997 and the results were published in [24,25]. From these data the gravitational
constant was found to be

G = (6.6754± 0.0005± 0.0013)× 10−11m3kg−1s−2 (water).

The statistical uncertainty is 75 ppm and the systematic uncertainty is 209 ppm.
The detailed error budget is reproduced in Table 3.

Since the beginning of 1998 measurements with mercury filled vessels are
in progress. A preliminary result of these measurements was published in [26].
During the mercury runs a systematic variation of the measured signal as a
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Fig. 7. A typical example of a measurement cycle. Plotted is the reading of the balance
for the two field mass positions. Initially – in the left part of the graph – the vessels
are apart and the weight of the lower test mass is increased, the weight of the upper
test mass is decreased. At the right, corresponding to the first field mass position, the
situation is reversed. The smooth variation with time is caused by the drift of the
balance.

function of time was observed. In February of 1998 the results were slightly
larger than in later months until November. Surprisingly, a similar effect was
also observed in 1999. For this year we have data until May. Up to now, no fully
satisfactory explanation has been found. To take this into account, an extra
uncertainty of 80 ppm, which is one half of the observed variation, was included
into the error budget. As a consequence, the result from the mercury runs is not
more accurate than the water results, despite the larger signal. The published
value is

G = (6.6749± 0.0014)× 10−11m3kg−1s−2 (mercury).

Here only the systematic uncertainty is given and the statistical uncertainty is
comparatively negligible.

6 Outlook

The results of the measurements with the water filled vessels and the mercury
filled vessels agree within their errors (see Fig.1). Our results are 420 ppm or ap-
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Fig. 8. Measured weight difference from three days of data during 1999. The inset
shows the difference of the last half–cylce expanded vertically by a factor 500.

proximately two of our standard deviations larger than the CODATA value from
1986. The error budget is dominated by a possible, but not yet fully investigated,
nonlinearity of the balance. This large uncertainty arose, because the balance
was calibrated with a 1 g standard weight, whereas the measured signal was only
0.8mg (mercury). We hope that with future work a significant improvement is
possible. The next largest error was assigned because of the observed systematic
variation mentioned above. This effect is difficult to understand, because most
conceivable causes should precisely cancel in the result. In fact, we have not
yet been able to identify a unique cause but believe that it is related to some
instabilities in the experiment. At present we are working on a greatly improved
temperature stabilization. Also sensitive tilt meters will be installed to monitor
possible tilt changes of the balance. We hope to reach the design accuracy of the
experiment of 10× 10−6 in the near future.
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Table 3. Systematic uncertainties of the gravitational constant, measured with water–
filled and with mercury–filled vessels as published in [26]. The uncertainties are grouped
according to the contributions of the test masses, the vessels, the liquid and further
effects. They are estimated at a confidence level of 68.3% and the total uncertainty is
the root–mean–square value

∆G/G[10−6]
Source of uncertainty Water Mercury
test mass position 11 10
test mass dimension 2.7 2.0
density inhomogeneity ≤ 1 ≤ 2.2
masses of test masses 0.27 0.27
joints and spindle drive 16 2.2
shape and volume 14 2
dimensions of the vessels 11 1.6
density inhomogeneity ≤ 5 ≤ 0.06
masses of the vessels 4 0.5
air displaced by the vessels 7 2
density of the liquid 15 18
mass of the liquid 8 0.7
nonlinearity of the balance ≤ 200 ≤ 200
systematic variation - 80
sorption effect 45 6.4
integration ≤ 13 ≤ 5
tilt effect ≤ 18 ≤ 4
calibration 5 8
local gravity 0.06 0.06
total 209 217
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Abstract. A pedagogical derivation is given of the Lense–Thirring effect using basic
notions from the motion of point particles and light rays. First, the notion of rotation
is introduced using the properties of light rays only. Second, two realizations for a non–
rotating propagation of space–like directions are presented: the gyroscope and the spin
of elementary particles. Then the gravitational field around a rotating body is specified
which is taken for determining the various effects connected with a point particle or a
gyroscope: the deSitter precession (geodesic precession) and the Lense–Thirring effect
(‘frame dragging’). The results are applied to the precession of gyroscopes and to the
motion of satellites around the earth.

1 Introduction

In the Lense–Thirring effect three rotations are involved: the rotation of the
gravitating body, the rotation of the test body around its own axis, and the
rotation of the axis of rotation of the test body. The properties of the gravitating
body are prescribed, the rotating test body can be shown to move approximately
on a geodesics around the gravitating body, and its axis of rotation can be shown
to be Fermi propagated along the path of the test body resulting in a precession
of the axis of rotation with respect to distant stars. In this note we want to derive
all these notions and equations of motion from scratch in order to indicate clearly
that everything is provided by General Relativity: Everything follows from the
geodesic equation for point particles and the validity of Einstein’s equations;
we don’t have to use additional assumptions. At the end we will discuss several
experimental approaches to test the various effects related to rotating bodies.

In the following we (i) introduce the notion of rotation, (ii) derive the equa-
tion of motion of the spinning axis of a rotating test body, (iii) derive the gravita-
tional field of a rotating gravitating body, and (iv) use these results for discussing
and analyzing the equation of motion of the test body and of its spinning axis.

All of what we assume is that gravity is described by means of a Riemannian
geometry endowed with a space–time metric g and that light rays and freely
falling point particles move along geodesics of that metric,

Dvv = αv , (1)

where D is the unique metric compatible, Dg = 0, torsion–free, Duv − Dvu −
[u, v] = 0, covariant derivative. In components, (Dwv)ν = wµ(∂µvν + { ν

µσ }vσ),
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with the Christoffel symbol { ν
µσ } := 1

2g
νρ (∂µgρσ + ∂σgρµ − ∂ρgµσ). We do not

assume any normalization condition of the 4–velocity. Light rays with tangents l
obey the same equation of motion (1), but with the additional condition g(l, l) =
0. – In addition, we will assume Einstein’s field equations.

2 Rotation

central particle
auxilary particle auxilary particle

u

l1
l2

Fig. 1. Geometry of the bouncing photon.
Two auxilary particles communicate via
light rays in such a way that all light rays
(dashed lines) have to meet the central
particle. No particle is assumed to be in
geodesic motion.

In order to define the notion of ro-
tation, we use the so–called zig–zag
construction, or the bouncing photon,
as introduced by Pirani [1]. This con-
struction uses a central point particle
which moves along an arbitrary path,
see Fig.1. In the neighborhood of that
central particle there are two other
point particles equipped with a mir-
ror. At first, the central point particle
emits a flash of light which hits the
auxilary point particles. These auxi-
lary point particles reflect this flash of
light in such a way that it again meets
the central point particle and, in ad-
dition, the other auxilary particle po-
sitioned appropriately behind the cen-
tral particle. Then the auxilarty par-
ticles again reflect the flash of light so
that it again meets the central parti-
cle and the other auxilary particle, and
so on, see Fig. 1. For this construc-
tion we assume that the two satellites
are “near” to the central particle which
means that no curvature effects should
be involved. This is a condition which
can always be fulfilled.

It is not assumed that the central
particle moves along a geodesic. And
even if the path of this particle is geodesic, then the two auxilary particles in
general are not geodesic because they always have to be re–positioned in order
to meet the above construction.

In this way the particles define a time–like 2–surface, or, after projection
into the rest space of the central particle, a direction in the rest space prop-
agating along the path of the central particle. This construction defines the
propagation of the direction of the light rays in the rest space of the central
particle. It turns out that this propagation can be used to define the notion of
a “non–rotating” propagation of a vector. This notion coincides with the notion
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of Fermi–displacement which usually is used for the description of non–rotating
propagation. However, in our case we get this notion from an operational proce-
dure.

We now turn to the mathematical description of this procedure. We make
use of the equation of motion (1). The condition that the light rays with tangent
l1 and l2 lie in the same plane with the central particle u is

u = σ1l1 + σ2l2 , for some σ1, σ2 ∈ R . (2)

The condition that, after reflection, the light rays will cross the central worldline
again, is secured by

Ll1 l2 = ε1l2 + ε2l1 , for some ε1, ε2 ∈ R . (3)

Now we derive the equation which governs the transport of the directions

V1 := Pul1 or V2 := Pul2 , (4)

along u, where

PuA := A− g(A, u)
g(u, u)

u (5)

is the projection operator onto the rest space of the world line of the central
particle.

Using σ1V1 = −σ2V2 we get

PV1PuDuV1 =
1
σ1

PV1PuDu(σ1V1) =
1

2σ1
PV1PuDu(σ1V1 − σ2V2) . (6)

Inserting (2, 3, 4) and the equation of motion (1) for the light rays l1 and l2, we
finally get

PV1PuDuV1 = 0 . (7)

The expression FuV := PV PuDuV is the so–called Fermi–derivative of the vector
V along u. Eq.(7) is invariant against reparametrization of the paths, so that
it indeed describes the propagation of the direction V . This is precisely the
characterization of the bouncing photon which we take as definition for a non–
rotating propagation of a vector along a given path [1]. If for another vector
W defined along P the above expression does not vanish, then the operator Ω,
which is a ( 11 )-tensor defined by PWPuDuW = Ω(PuW ), is called the rotation
of W . This is the characterization of the notion “rotation” we announced.

Now we turn to the question whether, beside this bouncing photon, there are
other physical realizations of a non–rotating propagation.

3 Equation of Motion for Angular Momentum

There are indeed two further realizations for a non–rotating propagation which
are experimentally easier to handle with than the bouncing photon: One real-
ization is given by a rotating gyroscope possessing orbital angular momentum,
the other is the elementary particle with spin.
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3.1 The Motion of Gyroscopes

The metrical energy–momentum tensor Tµν which, within Einstein’s theory, is
the source of the gravitational field, is symmetric and divergence–free

DµT
µν = 0 . (8)

This is the equation of motion for matter in General Relativity.

Tµν �= 0

t = const.

Σt :

xcm(τ)

Fig. 2. The world–tube of space–time points
for which the energy–momentum tensor in non–
vanishing. The center–of–mass wordline is dotted.

In the case that matter is
fairly localized (that is, Tµν �= 0
for a compact space–like region
only, within which the gravita-
tional field in terms of the cur-
vature does not vary too much),
it is possible to extract from this
tensor a center–of–mass and
correspondingly the equation of
motion of this center–of–mass.
We assume that this center–of–
mass xcm(τ), where τ is the
proper time, lies within the
body, that is, {xcm(τ)|τ ∈ R} ⊂
suppTµν , see Fig.2. With this
center–of–mass worldline there
is connected the 4–velocity v =
d
dτ xcm.

In addition, one can define
an angular momentum with re-
spect to this distinguished point
is space–time and derive its

temporal evolution. In doing so we follow the procedure originated by Papa-
petrou [2,3] and developed further by Dixon and [4] and Ehlers and Rudolph
[5].

We first introduce a 3+1–slicing of the space–time by introducing hypersur-
faces Σt with normal nµ, see Fig. 2. From the energy momentum tensor we can
define various moments (Tµν =

√−g Tµν)

Pµ1µ2...µnν :=
∫
Σt

δxµ1δxµ2 · · · δxµnTν0d3x , (9)

Mρ1ρ2...ρnµν :=
∫
Σt

δxρ1δxρ2 · · · δxρnTµνd3x , (10)

where δxµ = xµ − xµcm with x, xcm ∈ Σt. We use coordinates so that t = const.
over Σt. Consequently, δx0 = 0 in (9) and nµ = δ0µ.

We can distinguish between various types of particles: If all momenta (9) but
the symmetrical

Mµν =
∫
Σt

Tµνd3x (11)
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vanish, then we have a particle which possesses no internal structure and thus
is called a point particle. It will become clear in the following that in this case

Pµ =
∫
Σt

Tµ0d3x (12)

can be identified with the momentum of that point particle. — If all momenta
but Mµν and

Mµνρ =
∫
Σt

δxµTνρd3x (13)

vanish, then we have a particle with mass and, in addition, an orbital angular
momentum which in this case is given by

Lµν := 2P [µν] = 2
∫
Σt

δx[µTν]0d3x . (14)

That this quantity indeed describes the angular momentum will become clear
later, too. This quantity characterizes a special type of internal motion, so that
we call this type of matter a spinning particle (please note, that this notion
“spin” does not mean the elementary particle spin), or spinning top. It can be
shown that the order of the highest moment is an invariant [2]. That means that a
spinning particle cannot become a point particle by a coordinate transformation.

We assume in the following that all other moments but (11) and (13) vanish.
From these definitions and the basic equation of motion (8) we first derive the
equations of motion for a point particle, and second for a spinning particle.

The point particle. From (8) we have 0 = ∂0T
µ0 + ∂iT

µi + { µ
νσ }Tνσ from

which we get by integration

d

dt
Pµ =

∫
Σt

∂0T
µ0d3x = −{ µ

νσ }Mνσ . (15)

In an analogous way we analyze the quantity
∫
xρTµνd3x. With (8) we get

∂0(xρTµ0) + ∂i(xρTµi) = Tµρ − xρ{ µ
νσ }Tνσ (16)

and thus, by integration,

Mµρ =
d

dt

∫
Σt

xρTµ0d3x+
∫
Σt

xρ{ µ
νσ }Tνσd3x . (17)

We expand x and { µ
νσ } around the coordinate of the worldline xcm

x = xcm + δx , { µ
νσ }(x) = { µ

νσ }(xcm) + δxκ∂κ{ µ
νσ }(xcm) (18)

and get, taking into account the condition for a point particle,
∫
δxTd3x = 0,

Mµρ = vρPµ . (19)
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Since Mµν is symmetric, we must have Pµ = mvµ with m := P 0/v0. Therefore
Mµν = m vµvν , and, consequently, we get from (15) Dv(mv) = 0. From this
and the fact that v is a normalized 4–velocity, g(v, v) = −1, we get Dvm = 0
which means that m is the mass of the particle which is constant. Then we also
have the geodesic equation for the center–of–mass trajectory:

Dvv = 0 . (20)

The spinning particle. This kind of particle is defined by
∫

Tµρd3x �= 0 and∫
δxµTνρd3x �= 0; all other moments vanish. We consider the divergences ∂ρTµρ,

∂ρ(xµTνρ), and ∂ρ(xµxνTσρ) and get in a way analogous to above

d

dt
Mµ0 = −{ µ

ρσ }Mρσ − ∂κ{ µ
ρσ }Mκρσ , (21)

d

dt
Mµν0 = Mµν − vµMν0 − { ν

ρσ }Mµρσ , (22)

vµMνσ0 + vνMµσ0 = Mµνσ +Mνµσ , (23)

where all Christoffel symbols are evaluated at the center–of–mass position xcm
and where, in addition to (11), we used (13). With definition (13) we also have
(note δx0 = 0)

Lµν = Mµν0 −Mνµ0 , (24)
Lµ0 = Mµ00 . (25)

Now we first express, using (23), Mµνρ in terms of v and L, and second, using
(22), the propagation of L, and, at last, with (21) the equation for the center–
of–mass motion.

Cyclic permutation of the three indices in (23) and adding two and subtract-
ing the third relation gives

2Mµνρ = vµ(Mνρ0 +Mρν0) + vνLµρ + vρLµν , (26)

where we used (24). By specifying σ = 0 in (23), we can express the first part
also in terms of the angular momentum, Mµν0+Mνµ0 = vµLν0+vνLµ0, so that
we finally find

2Mµνρ = vµ(vνLρ0 + vρLν0) + vνLµρ + vρLµν . (27)

Choosing ν = 0 in (22) and reinserting this into (22) gives

0 =
d

dt
Mµν0 + { ν

ρσ }Mµρσ −Mµν + vµ
(
vνM00 +

d

dt
Mν00 + { 0

ρσ }Mνρσ

)
.

(28)

Antisymmetrization leads to an equation of motion for L:

0 =
d

dt
Lµν − { µ

ρσ }Mνρσ + { ν
ρσ }Mµρσ +

[
vµ
(

d

dt
Lν0 + { 0

ρσ }Mνρσ

)
− (µ↔ ν)

]
.

(29)
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Inserting Mµρσ in terms of the center–of–mass velocity and the angular mo-
mentum, Eq.(27), we obtain a covariant equation of motion for the angular
momentum L:

0 = DvL
µν + vµDvL

ν0 − vνDvL
µ0 . (30)

Multiplication with vν gives DvL
µ0 = −vνDvL

µν − vνv
µDvL

ν0 which can be
inserted into (30)

0 = DvL
µν + vµvρDvL

ρν + vνvρDvL
µρ = PvDvL

µν . (31)

This is the equation of motion for the angular momentum.
In a similar fashion [2] we derive from (21) the equation of motion for the

path. We get
Dv (mvµ − vρDvL

µρ) =
1
2
Rµ

νρσv
νLρσ . (32)

By counting the degrees of freedom, it is clear that (31) and (32) are 6
equations for 3 components of vµ and 6 components of Lµν . Therefore we have
to reduce the numer of unknown components in the angular momentum. What
is still unspecified in our approach is the center–of–mass coordinate. The center–
of–mass coordinate can be determined by the so–called Frenkel condition

0 = Lµνvν = vν

∫
δx[µTν]0d3x , (33)

which leads to an expression of the form 0 =
∫
ρδxµd3x+ relativistic corrections,

where ρ = T00 is the energy density, see [5], e.g., for a detailed treatment of the
center–of–mass problem.

If the Frenkel condition is valid, then it makes sense to introduce a vector
for the angular momentum Lµ := 1

2ε
µνρσvνLρσ. In terms of this vector, Eq.(30)

means that the angular momentum vector is Fermi propagated,

FvL = PvDvL = 0 (34)

and thus is non–rotating.

3.2 Motion of an Elementary Particle with Spin 1
2

A spin–12–particle ψ is assumed to obey an equation of motion which can be de-
rived from the minimally coupled Lagrangian for the Dirac field in a Riemannian
geometry:

L =
√−g

[
i�

2
(
ψ̄γµDµψ − (Dµψ̄)γµψ

)−mψ̄ψ

]
. (35)

The parameter m is the mass of the Dirac particle. The matrices γµ are given by
γµ = hµaγ

a where the γa are the special relativistic Dirac matrices obeying the
Clifford algebra γaγb + γbγa = 2ηab (ηab = diag(−1,+1,+1,+1)). The tetrads
hµa are defined by gµνh

µ
ah

ν
b = ηab. Therefore

γµγν + γνγµ = 2gµν . (36)
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Dµ is the covariant spinorial derivative Dµ = ∂µ+Γµ with the spinorial connec-
tion Γµ := − 1

2 (Dµh
ν
a)hbνG

ab (the covariant derivative Dµ acts on the vectorial
index µ in Dµh

ν
a only). The Gab := 1

4 (γ
aγb − γbγa) are the generators of the

Lorentz–group. The adjoint spinor is defined by ψ̄ := ψ+γ(0) (in this case ψ̄ψ
transforms as a scalar). Here γ(0) is the zeroth special relativistic Dirac–matrix.

Variation of the above Lagrangian with respect to ψ̄ gives the field equation

0 = i�γµDµψ −mψ . (37)

This is the Dirac equation in curved space–time. Here we use c = 1.
Now we describe a particle in a quasiclassical approximation. That means,

we look for a solution of the Dirac equation (37) which locally has the form of a
plane wave:

ψ = e
i
�
S(x)a(x) . (38)

Inserting this ansatz into the field equations (37) gives

0 = −(γµ∂µS +m)a+ i�γµDµa . (39)

The main step of the quasiclassical approximation consists in the assumption
that the external fields are weak enough, so that, in first approximation, the
derivatives of the amplitudes can be neglected. That means (−γµ∂µS +m)a +
i�γµDµa ≈ (−γµ∂µS+m)a, or |�γµDµa| � |ma|, where | · | denotes some norm
on a complex vector space. If we use this condition, then we get from (39) with
pµ := −∂µS

0 = (γµpµ −m)a . (40)

Here pµ is the momentum of the plane wave. Eq (40) is an algebraic condition
which possesses a solution for pµ if and only if the determinant of the coefficient
matrix vanishes, 0 = det(γµpµ −m). This leads to the condition

0 =
(
gµνpµpν +m2)2 . (41)

(The exponent 2 characterizes the fact that we have for both spin states the
same mass shell.) Eq (41) is a Hamilton–Jacobi partial differential equation for
the phase S(x, t) which always possess a solution.

From the plane wave ansatz (38) we can define a wave packet by superposition
of plane waves from a continuous spectrum of momenta peaked around p̂µ. Then
one can show that the tangent vector of the path of the peak of this wave packet
is given by the group velocity vµ := 1

mgµνpν |p=p̂ which fulfills the normalization
condition, g(v, v) = −1. Differentiating (41) once more yields immediately the
geodesic equation for this group velocity

0 = Dvv . (42)

The integral curves of this geodesic equation are the paths of the peaks of wave
packets.
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If we have a solution of the first order equation, then the first part in (39)
vanishes and we get as equation for the next order of approximation

0 = γµDµa . (43)

What we are looking for is a propagation equation for the amplitude, that is, an
equation of the form Dva = f(x, v)a which describes the evolution of a along
the path given by v. For this we multiply (43) with (γνpν +m)/m and get

0 =
1
m
(pνγν +m)γµDµa

=
1
m

(γµ (Dµ ((pνγν +m)a)−Dµ(γνpν +m)a) + pν [γν , γµ]Dµa)

= −Dµv
µa− 2vµDµa . (44)

Here we used ∂[µpν] = 0. For obtaining this result, the existence of a Clifford
algebra is important. With the definition for the expansion θ := Dµv

µ we finally
find

Dva = −1
2
θa . (45)

The same holds true for the adjoint spinor: Dvā = − 1
2θā. Within the frame of

the theory of congruences [6] (see also the Appendix), θ is interpreted as the
divergence of the trajectories given by the phase S(x). If we define a normalized
spinorial amplitude b := a/

√
āa, then we get [7,8]

Dvb = 0 , Dv b̄ = 0 . (46)

That means that the normalized spinors b and b̄ are parallely propagated along
the path of the center of the wave packet.

With these propagation equations for the spinors b and b̄, we can calculate
propagation equations for the bilinears [9] S := b̄b, P := b̄iγ5b, jµ := b̄γµb,
Sµ := γ̄5γ

µb, and Sµν := b̄2iGµνb. Using (40) one can derive

Spµ = mjµ , (47)
Sµpµ = 0 , (48)

P = 0 , (49)
εµνρσS

σpρ = −mSµν . (50)

The last relation can be inverted:

vaSb − vbSa =
1
2
εabcdS

cd . (51)

From these identities we get an interpretation of these bilinear quantities.
Eq.(47) yields ja = Sva so that S is the intensity of the Dirac field. Since Sa is
an axial vector and, according to (48) a rest–frame quantity, it is identified with
the spin of the Dirac particle.
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Therefore, the only independent normalized quantities are the normalized
current ĵµ = b̄γµb = vµ and the normalized spin–vector Sµ = b̄γ5γ

µb. The
propagation equations (46) for b and b̄ then give propagation equations for jµ

and Sµ:

Dvv = 0 , (52)
DvS = 0 . (53)

Therefore the direction of the spin is parallely propagated along the path of
the Dirac particle. The spin behaves in the same way as a spinning top. (For a
gravitational theory with torsion it can be shown that the spin couples to torsion
while the orbital angular momentum does not [10].)

We note without proof that in the next approximation it is possible to get
an influence of the spin on the path of the wave packet [8]:

Dvv =
1
2
λCR

∗(·, v, S, v) , (54)

where R∗ is the right–dual of the curvature tensor and C the Compton wave-
length of the Dirac particle.

4 Gravitational Field of a Rotating Body

In this section we want to derive the general features of a gravitational field
which is created by a rotating body. The gravitational field, that is, the space–
time metric gµν , is given by Einstein’s equations

Rµν − 1
2
gµνR =

8πG
c2

Tµν , (55)

where G = 6.673(10)×10−11m3kg−1s−2 is Newton’s gravitational constant [11].
We now analyze two aspects of a rotation in the gravitational field: (i) we discuss
the gravitational field of an arbitrary stationary situation and (ii) discuss the
general structure of the gravitational field created from a rotating mass given in
form of the energy momentum tensor.

4.1 Stationary Gravitational Field

A stationary gravitational field is characterized by a time–like Killing vector ξ,
g(ξ, ξ) < 0, with £ξg = 0, whereas a gravitational field with an axial symmetry
is characterized by a space–like Killing vector η, g(η, η) > 0, with £ηg = 0 and
the integral curves of η are space–like closed curves. An axisymmetric space–
time possess both Killing vectors ξ and η which, in addition, should commute
[ξ, η] = 0. For any Killing vector field then there exists a coordinate system,
which coordinate lines are the integral curves of the Killing vector field, so that
the metric does not depend on the coordinates corresponding to the Killing field.
For a stationary gravitational field this means g(x) ∗= g(x1, x2, x3) and, if the
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gravitational field possesses an additional axial symmetry, then g(x) ∗= g(x1, x3),
where x0 plays the role of the time coordinate and x2 the role of the angle ϕ.
Therefore ds2 = gµν(x1, x3)dxµdxν . If we choose x1 = ρ and x3 = ϑ, then

ds2
∗= g00(ρ, ϑ) dt2 + 2g0i(ρ, ϑ) dt dxi + gij(ρ, ϑ) dxi dxj . (56)

We call a gravitational field static if the rotation of the time–like Killing
congruence vanishes (cf. Appendix): ω = 0 or εµνρσξν∂ρξσ = 0. The gravitational
field is stationary, if the Killing congruence rotates: ω �= 0 or εµνρσξν∂ρξσ �= 0.

The standard example for a static space–time is given by the Schwarzschild
solution, and an example for a stationary space–time is given by the Kerr so-
lution, see [12], e.g., or the space–time determined from a thin rotating disk
[13].

4.2 Gravitational Field of a Rotating Source

It is intuitively clear what a rotating source is: The source consists of a set
of point particles (a gas, or a rigid body, for example), which form a rotating
congruence. The particles of the source may interact with one another. Therefore,
the source is a conguence of point particles moving on trajectories with 4–velocity
u. This congruence may possess rotation, acceleration, expansion, and shear. If
we have, as a very simple example, a perfect fluid, then we have as source of
the gravitational field the energy–momentum tensor Tµν = (ρ+ p)uµuν + pgµν ,
where ρ is the energy density and p the pressure. For p = 0 (dust) one can show
that the geodesic equation (1) follows from (8). If the vector field u belongs to
a rotating congruence, then this energy–momentum tensor describes a rotating
source.

We now calculate the gravitational field which is created by such a rotating
source. For this purpose, we split the metric into two parts, g = g0 + g1. The
curvature associated with g can be split into a term corresponding to g0 and
terms depending on g1 [12]: R(g) = R(g0) + δR(g0, g1). We assume that the
curvature associated with g0 vanishes, R(g0) = 0. From the Einstein equations
(55) we finally get a differential equation for the part g̃1 := g1 − 1

2 ḡ1g0 with
ḡ := gµν0 g1µν :

� g̃1 = κT , (57)

where � is the d’Alambertian with respect to the metric g0 and where we have
chosen a coordinate system such that ∂νg

µν
1 = 0, with gµν1 := gµρ0 gνσ0 g1ρσ. Be-

cause the curvature associated with g0 vanishes, it is possible to introcduce a
global coordinate system such that g0µν = ηµν . If the source is stationary, then g1
does not depend on the time and (57) reduces to the Poisson equation ∆ g̃1 = κT
which can be integrated,

g̃1 = κ

∫
T (r′)
|r − r′|d

3x′ , (58)

provided T falls off appropriately at spatial infinity.
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The component T00 =: ρ of the energy–momentum tensor is interpreted as
the energy density, the components Ti0 = Ti0 =: ρvi as the energy flux, and the
Tij as the stress tensor (i, j, . . . = 1, 2, 3). Therefore,

(g̃1)00 = G

∫
ρ(t, r′)
|x− r′|d

3x′ , (59)

(g̃1)i0 = G

∫
ρ(t, r′)vi(t, r′)
|r − r′| d3x′ , (60)

(g̃1)ij = G

∫
Tij(t, r′)
|x− r′| d

3x′ . (61)

It is clear that (g̃1)i0 is smaller than (g̃1)00 by a factor v/c and (g̃1)ij by a factor
(v/c)2, cf. [12]. In the case of an isolated body and large distances, we have

U := (g̃1)00 = G
M

r
, hi := (g̃1)i0 = −G

2
(r ×L)i

r3
, (62)

where M is the total mass and L the angular momentum of the gravitating
body.

In a coordinate system where the components of the metric are isotropic, we
have as line element

ds2 = −(1− 2U + 2U2) dt2 + (1 + 2U)(dx2 + dy2 + dz2)− 4hi dxi dt , (63)

or

gµν =
(−1 + 2U − U2 −2hi

−2hi (1 + 2U)δij

)
. (64)

This metric is time–independent. Thus a time–like Killing vector ξ = ∂t exists,
in components ξµ = δµ0 . The different components of this vector ξ are given by

ξµ = δµ0 , ξ0 = g0νξ
ν = g00 , ξi = giµξ

µ = g0i = −2hi . (65)

Hence the curl of the Killing vector field (see Appendix) is connected with ∂[ihj].
The tetrads ϑa (one–forms, a = 0, . . . 3) connected with the Killing vector

field ξ are given by

ϑ
(0)
0 = −1 + U − 1

2
U2 , ϑ

(0)
i = −hi (66)

ϑâ0 = −hâ , ϑâi = (1 + U)δâi . (67)

Later we need to boost this tetrad to a comoving (with the gyroscope) tetrad
ϑ̄a = La

b(ẋ)ϑb where ẋ is the relative velocity of the gyroscope with respect
to the tetrad ϑa. Since for a pure boost with small velocity v we have L =(
1− 1

2 ẋ
2 ẋ

ẋ δij +
1
2 ẋ

iẋj

)
, we find for the new tetrad

ϑ̄
(0)
0 = −1 + U − 1

2
U2 − 1

2
ẋ2 , ϑ̄

(0)
i = −hi + ẋi (68)

ϑ̄â0 = −hâ + ẋâ , ϑ̄âi = (1 + U) δâi + ẋâẋi . (69)
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5 Lense–Thirring Effect

Let us combine the results and notions derived above in order to describe the
dynamics of a rotating test body in the neighborhood of a gravitating rotating
body. We consider a stationary situation: The gravitating body rotates with a
constant angular velocity. In the field of such a body we will consider the motion
of a point particle as well as the motion of a gyroscope.

5.1 Motion of a Point Particle

The equation of motion for a point particle is the geodesic equation Dvv = 0.
The four components of this equation can be evaluated by using the solution
for a static spherically symmetric mass distribution, that is the Schwarzschild
solution, or the solution for rotating bodies, like the Kerr metric or the metric
for a rotating disk of dust [13]. However, in our approach, we restrict ourselves to
the case of a weak stationary gravitational field. In this case, for a point particle
without spin and in 3–notation, the geodesic equation reads

d2r

dt2
= ∇U + F − 2v × (∇× h) . (70)

The first term is the Newtonian part whereas F symbolizes nonlinear contribu-
tions of the gravitostatic field U which are responsible for the perihelion shift,
for example. The last term is the gravitomagnetic part due to the rotation of the
gravitating body. Since the motion of a satellite around the earth represents a
gyroscope, too, this interaction results in a precession of the angular momentum
of the satellite around the earth. Therefore, the plane of the path of the satellite
is no longer fixed, as it is in the Schwarzschild case, but starts to precess instead.
Thus the pericenter (perihelion) or the nodes (intersections of the paths of the
satellite with the equatorial plane of the earth) move. This should be observable
in an experiment proposed by Ciufolini [14] according to which two excentric
satellites orbit around the earth.

5.2 Motion of a Gyroscope

For the description of the motion of a direction attached to a gyroscope we use
Eqs.(34) and (32) or (53) and (54). For simplicity we assume that the path is
geodesic which is very well fulfilled because, according to Eqs.(32) and (54), all
non–geodesic terms can be neglected for weak gravitational fields.

The non–rotating frame defined by the gyroscope will be compared with a
direction given by a fixed star far away from the gravitating body. The light from
that star comes from a fixed direction. Thus the tangent vector l of light rays
of this star is stationary: £ξl = 0. Accordingly, we can introduce a stationary
space–like unit vector: e(1) = Pul/(g(Pul, Pul))1/2, which again is stationary
£ξe(1) = 0. We can complete this unit vector to give a 3–bein by adding two
more spatial unit vectors which are orthogonal to e(1) and to each other and
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which are stationary, too: g(eâ, eb̂) = δâb̂, £ξeâ = 0. If we take e(0) = u, then
ea = (u, eâ) defines a tetrad with £ξea = 0. Accordingly, also for the dual basis
ϑa we have £ξϑ = 0.

In order to determine the behaviour of the gyroscope with respect to the
direction given by the fixed star, we project the spin of the gyroscope on the
comoving basis connected with the fixed star: S̄a := ϑ̄a(S). This projection is
the quantity observed. We calculate the dynamics of this projection ˙̄Sa = ∂vS̄

a,
where S is parallely displaced along the path of the gyroscope, while the basis
ϑa is Lie–displaced along ξ:

ϑ̄
comoving with gyro��

��

Lorentz–transf. La
b�� ϑ
attached to distant stars��

��
DvS = 0 £ξϑ = 0

The four–velocity of the gyroscope is related to the fourth leg u via v = γu +
γẋâeâ where γ is the Lorentz factor (1− ẋ2)−1/2 and ẋâ is the relative velocity
measured between u and v. Moreover, because of ϑ̄(0)(S) = 0, we have 0 =
L(0)

bϑ
b(S) = L(0)

(0)ϑ
(0)(S) + L(0)

âϑ
â(S) so that

ϑ(0)(S) = −ẋâϑâ(S) . (71)

We calculate, using (34) and (53), respectively, (â = 1, 2, 3),

˙̄S
â
= Dv(ϑ̄â(S))
= (Dvϑ̄

â)(S) + ϑ̄â(DvS)
= (Dvϑ̄

â)(S)
= (Dv(Lâ

bϑ
b))(S)

= DvL
â
bϑ

b(S) + Lâ
b(Dvϑ

b)(S) . (72)

The first term can be evaluated by using La
b =

(
1 + 1

2 ẋ
2 ẋb̂

ẋâ δâ
b̂
+ 1

2 ẋ
âẋb̂

)
and

DvL
a
b =

(
ẋĉẍ

ĉ ẍb̂
ẍâ 1

2 (ẍ
âẋb̂ + ẋâẍb̂)

)
. With (71) this yields

DvL
â
bϑ

b(S) = DvL
â
(0)ϑ

(0)(S) +DvL
â
b̂ϑ

b̂(S) ≈ −1
2
(v̇âvb̂ − vâv̇b̂)ϑ̄

b̂(S) . (73)

For the seond term

Lâ
b(Dvϑ

b)(S) = Lâ
b(Dγu+γẋϑ

b)(S) ≈ Lâ
b(Duϑ

b)(S) = Lâ
be
−U (Dξϑ

b)(S)(74)

we use the fact that the frame ϑ is stationary: £ξϑ
a = 0. In components: 0 =

ξνDνϑ
a
µ + ϑaνDµξ

ν , so that (Dξϑ
a)µ = −ϑaνDµξ

ν . Thus

(Dξϑ
a)µ = −ϑaνDµξ

ν = −ϑaν(eUωµν +
ξ
aµξ

ν − ξ
aνξµ) . (75)
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Therefore we find for the total precession of the spin

˙̄S
â
= −1

2
(ẍâẋb̂ − ẋâẍb̂) ϑ̄

b̂(S)− Lâ
be
−Uϑbν (eUων

µ +
ξ
aµξ

ν − ξ
aνξµ) Sµ

= −ωa
bS̄

b −
[(

ξ
aâ +

1
2
ẍâ
)
ẋb̂ − ẋâ

(
ξ
ab̂ +

1
2
ẍb̂

)]
S̄ b̂ , (76)

with uâ = 0 and where we neglected terms with “velocity × gravitomagnetic

field” and terms of the order ẋ2. Using ẍâ = aâ +
ξ
aâ, where a is any non–

gravitational acceleration, we finally arrive in 3–notation at

d

dτ
S = Ω × S , (77)

with

Ω = v ×
(
−1
2
a+

3
2
∇U

)
+ ∇× h . (78)

The first term v × a is a special relativistic term, called the Thomas precession
which is known from atomic physics. It describes the precession of the spin due
to inertial forces. Thus, the second term, v×∇U , is a gravity–induced Thomas
precession, the so–called de Sitter precession or geodetic precession. Note that
only the Newtonian potential enters this term. The last term is purely post–
Newtonian and describes the Lense–Thirring effect. This is the rotation of the
locally non–rotating frame with respect to distant fixed stars due to the rotation
of a nearby rotating gravitating body (‘frame dragging’).

6 On the Observation of Gravitomagnetic Effects

The systematic analysis of relativistic effects of planetary motion and motion
of the moons of the planets dates back to the first years after the publication
of Einstein’s theory in 1915. In 1916, W. de Sitter [15] predicted a geodetic
precession of the rotating earth-moon system (‘earth–moon gyroscope’) in the
gravitational field of the sun. (The de Sitter term in (78) provides a simple
model of the dynamics of that system.) The effect has finally been detected in
the late 80’s by means of an elaborate combination of lunar ranging and radio
interferometry data [16]; refined data can be found in [17]. The accuracy of
this verification is of the order of 1%. Three years after de Sitter, J. Lense and
H. Thirring published their pioneering work “about the influence of the proper
rotation of the central bodies on the motion of the planets and moons according
to Einstein’s gravitational theory” [18]. Analyzing the equations of motion (70),
they excluded measurable effects for the moon orbit as well as for the orbits
of the planets, but found considerable secular relativistic perturbations of the
orbital parameters of the moons of the outer planets. In particular, Jupiter V
evidenced a gravitomagnetic shift of its pericenter of 2.26 arcsec/yr. However, a
confirmation of their prediction by observation was not possible at that time.
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In the next two sections, we will discuss the theoretical fundamentals of recent
satellite experiments. In this context, the earth will be considered to be a sphere
(radius R) rotating with a constant angular velocity about its axis, which has a
fixed orientation in an inertial system connected with the (distant) stars.

6.1 Lense–Thirring Effect for Point Particles

According to (70) and (62), the equation of motion for a spinless particle (satel-
lite) in the gravitational field of the rotating earth is given by1

d2r

dt2
= − 1

r3
GMr+

2G
c2r3

dr

dt
×
(
L− 3 (L · r)

r2
r

)
, (79)

where M is the mass of the earth and L is its angular momentum. A detailed
discussion of these equations and explicit expressions for the relativistic pertur-
bations of the particle orbit may be found in the original paper of Lense and
Thirring [18].

According to the proposal of Ciufolini, it should be possible, with present-
day technology, to measure the advance of the pericenter and the nodes of highly
eccentric satellites. A first attempt to do this using the LAGEOS I and LAGEOS
II satellites, has been carried through in [19–21]. It was possible to verify the
gravitomagnetic effect with an precision of about 10%. This poor precision is a
result of the low eccentricity of the orbits of the satellites and the difficulties in
eliminating the multipoles of the earth which give rise to contributions of com-
parable order. The idea of a further experiment [14] is to orbit a new LAGEOS
satellite with the same orbital parameters as those of an existing LAGEOS, but
with supplementary inclinations, and to observe the bisector of the angle be-
tween the nodal lines which defines a kind of gyroscope. The expected precision
of the verification of the gravitomagnetic effect is of the order of 3% after 3 years
of Laser measurements (see also [22]).

6.2 Lense–Thirring Effect for Gyroscopes

Since the early 60’s, the Stanford orbiting gyroscope experiment, Gravity Probe
B, has been under development [23]. The experimental construction has been
completed and the experiment should be performed in 2000/2001. The idea is
to put a spacecraft in a polar orbit equipped with four gyroscopes (see Fig.1 on
page 53 of Everitts’s paper in this volume) and to measure the gravitomagnetic
precession of the spins of the gyroscopes. To calculate the expected numerical
values for the de Sitter and Lense–Thirring effects, we consider a single gyroscope
with spin S at a circular polar orbit. We introduce a co–moving but non–rotating
orthogonal coordinate system Σ the z–axis of which is parallel to the earth’s
angular momentum L and the x–axis of which lies in the orbital plane (y = 0),
which has a fixed position with respect to the distant stars. The orientation of
the co–moving frame can be maintained by two telescopes on board the satellite
each of which points at a particular fixed star.
1 For simplicity, the nonlinear term of (70) has been omitted.
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ω
L

∇ × h

S

Fig. 3. The Lense–Thirring effect for gyroscopes: The earth rotating with angular
velocity ω and angular momentum L creates a gravitomagnetic field with the shape of
a magnetic dipole. A gyroscope with angular momentum or spin S moves around the
earth along a geodesic circular polar orbit (thick solid line). The Lense–Thirring effect
consists in the precession of S around the direction given by the field lines of ∇ × h.

In order to apply Eqs. (77,78), we have to specify the position vector r of
the gyroscope (origin of Σ) and the angular velocity Ω. Obviously,

r = (r cosω0t, 0, r sinω0t) . (80)

Here r is the constant distance of the gyroscope from the center of the earth and

ω0 =
1
r

√
GM

r
(81)

is the orbital angular velocity of the satellite. Then,

Ω =

(
3GL

2r3c2
sin 2ω0t,

3
2

√
GM

r

GM

r2c2
,

GL

2r3c2
(1− 3 cos 2ω0t)

)
. (82)

A good approximation for the angular momentum of the earth is

L = 0.3306 ·MR2ω, (83)

where M = (5.974± 0.004) 1027 g is the mass, R = (6378140 ± 5) m the equa-
torial radius, and ω the angular velocity of the earth.



48 C. Lämmerzahl and G. Neugebauer

Note that the choice of Σ has separated the de Sitter and the Lense–Thirring
contributions to Ω: Ωx and Ωz are pure Lense–Thirring terms whereas Ωy is of
geodetic origin. After a decomposition of the spin vector S in spherical polar
coordinates,

Sx = S cosϕ sinϑ , Sy = S sinϕ sinϑ , Sz = S cosϑ , S = |S| , (84)

Eqs.(77,78) take the form

ϕ̇ = −Ωx cosϕ cotϑ−Ωy cotϑ sinϕ+Ωz , (85)

ϑ̇ = −Ωx sinϕ+Ωy cosϕ . (86)

In order to keep the two effects separate, we may start from an equatorial position
(t = 0; r = (r, 0, 0)) and choose the spin vector S to be perpendicular to the
angular momentum L of the earth (t = 0 : ϕ = 0, ϑ = π

2 ). From the linearized
Eqs.(85,86)

ż = iΩxz + (Ωy + iΩz) , (87)

where z = ϑ− π
2 + iϕ, we finally obtain the desired secular angular precessions

∆ϑ = Ωy∆t =
3
2

√
GM

r

GM

r2c2
∆t (88)

∆ϕ = Ωz
t
∆t =

GL

2r3c2
∆t . (89)

Here Ωz
t
is the time–averaged Ωz as experienced by the gyroscope. For a polar

orbit at about 650 km altitude (r = (6371+650) km) this leads (note also (83))
to a rate of

∆ϑ

∆t
= 6.6 arcsec/yr (90)

for the geodetic precession and

∆ϕ

∆t
= 0.041 arcsec/yr (91)

for the Lense–Thirring precession.
The goal for the precision of the Gravity Probe B experiment is about 0.01%

for the de Sitter effect and about 1% for the Lense–Thirring effect (in contrast
to the Lense–Thirring effect for orbiting point particles the multipole moments
of the earth play no role here [24]). The measurement of these effects is based
on SQUIDs. The numerical values (90) are illustrated in Fig.1 of Everitt’s talk
(see p. 53), which, moreover, describes the technicalities o f the sophisticated
equipment.

6.3 Lense–Thirring Effect in Quantum Physics

Due to huge improvements in the accuracy of devices based on the quantum
properties of matter, it may be useful to estimate the effect of a rotating grav-
itating body on quantum particles. Two types of effects can be imagined: The
effect on a matter wave interferometer and the effect on the spectrum of atoms.
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In the first case, the field Ω acts like a rotation of the interferometer if
the interferometer is attached to the fixed stars. The effect of rotation of the
interferometer on the phase of the quantum interference is the famous Sagnac
effect δφSagnac = m

�
ω ·A, where ω is the angular velocity of the interferometer

and A its area. Due to great success, e.g., in the cooling of atoms which makes
it possible to prepare interfering atoms which stay for a long time inside the
interferometer and thus possess a long interaction time, it may be possible to
detect the Lense–Thirring effect with atomic interferometry, see [25] for a recent
account on the sensitivity of atomic interferometers on rotation.

A realization of this effect is attempted within the HYPER project which is
planned to put atomic interferometers in space and to measure, beside the fine
structure constant and the quantum gravity induced foam structure of space, the
Lense–Thirring effect. For this purpose, two atomic interferometers based on Mg
and two based on Cs will be placed in two orthogonal planes. The resolution of
rotation rates aimed at is 10−14 rad/s for an integration time of 1000 s. Note that,
contrary to the GP-B approach where the cumulative effect over apoproximately
one year is read out, in this case the angular velocity ∇×h is measured locally.
No integration over many days is carried through. The integration takes place
for a few minutes only, that is, for a duration, over which the curl ∇ × h is
approximately constant. HYPER is planned to be put into orbit within the next
10 years.

It has been shown that the rotation of the earth has an influence on the
spectrum of atoms: While searching for anomalous spin–couplings in atoms [26],
one has to compensate for the influence of the earth’s rotation on the spin. This
in fact establishes [27] an experimental verification of the coupling between spin
and rotation, see [28]. However, since the accuracy of this result is not very high,
and since the rotation caused by Ω is about 9 orders of magnitude smaller than
the earth’s rotation, there is no hope in near future to use this approach for a
verification of the Lense–Thirring effect.

Appendix: Theory of Congruences

For a time–like vector field u, g(u, u) = −1, which may be interpreted as a field
of four velocities being tangents at a set of point–like particles, like dust, we
have [6]

Dµuν = ωνµ + σνµ +
1
3
θPµν − uµaν , (92)

where

ωνµ := (Pu)ρν(Pu)σµD[σuρ] , (93)

θ := Pµν
u D(µuν) , (94)

σνµ := (Pu)ρν(Pu)σµD(σuρ) − 1
3
θ(Pu)µν , (95)

a := Duu , (96)
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with the projection operator

(Pu)νµ := δνµ + uνuµ . (97)

For a time–like Killing congruence, that is, a congruence the four–velocity of
which is proportional to a Killing vector field,

ξ = eUu , £ξg = 0 , g(u, u) = −1 , (98)

we have σµν = 0 and θ = 0. A Killing congruence possesses only rotation and
acceleration. (One can show, that ω is, indeed, a rotation as defined in section
2.) Then the acceleration of u is given by

ξ
a := Duu = dU , DuU = 0 , (99)

which we get from projecting 0 = Dµξν + Dνξµ onto uν and uµuν . With this
result we get

Dµξν = Dµ(eUuν) = eUωνµ +
ξ
aµξν − ξ

aνξµ . (100)
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18. J. Lense and H. Thirring: Über den Einfluß der Eigenrotation der Zentralkörper auf
die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie,
Physik. Zeitschr. 19, 156 (1918).

19. I. Ciufolini, D. Lucchesi, F. Vespe, and F. Chieppa: Measurement of gravitomag-
netism, Europhys. Lett. 39, 359 (1997).

20. I. Ciufolini, F. Chieppa, D. Luccesi, and F. Vespe: Test of Lense–Thirring orbital
effect due to spin, Class. Quantum Grav. 14, 2701 (1997).

21. I. Ciufolini, E. Pavlis, F. Chieppa, E. Fernandes–Vieira, and J. Pérez–Mercader:
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Gravity Probe B: Countdown to Launch
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Gravity Probe B team

1 W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA
94305, USA

2 Physics Department, San Francisco State University, 1600 Holloway Ave., San
Francisco, CA 94132, USA

Abstract. NASA’s Gravity Probe B Mission is a test of two predictions of Einstein’s
General Theory of Relativity based on observations on very precise cryogenic gyro-
scopes in a satellite in a 650 km polar orbit about the Earth. Construction and the
first round of testing of the flight payload was completed in December 1999. Of the 32
planned qualification tests 28 were passed with complete success, meeting or in several
instances surpassing the program requirements. However, one test very unexpectedly
revealed a p roblem in the thermal performance of the Dewar/Probe system which has
required a significant redesigin and rework, now successfully completed. Gravity Probe
B is scheduled for launch on April 1, 2002. This article reviews from the physicist’s
viewpoint the experience of living through a space flight program.

1 Gravity Probe B: An Experiment in Physics –
and Management

To physicists trained in ground–based research the thought of carrying out an
experiment in space is a daunting prospect. The laboratory experiments we are
accustomed to seldom work at a first attempt: many stages of redesign and
reconstruction are necessary before the desired performance can be met. Space
is different. Space experiments of their very nature have to be designed and built
so that once on orbit they will work first time. Furthermore the design has to be
‘robust’. Robustness means introducing redundancy into areas that might fail.
Redundancy, however, adds complexity. Striking the right balance between these
competing requirements is critical to any successful space mission. By now, after
forty years of space flight, considerable experience exists about how to approach
such issues (not least how to bring together the right mix of science, engineering
and management skills to do so).

The NASA/Stanford Gravity Probe B Mission (GP-B) is a Fundamental
Physics experiment designed to provide two extremely precise tests of Einstein’s
theory of gravitation, General Relativity, based on observations of electrically
suspended gyroscopes in a satellite in a 640 km circular polar orbit around
the Earth, see Fig.1. It will measure the geodetic effect due to the curvature of
space–time by the Earth to approximately 2 parts in 105 and the frame–dragging
effect, with its subtle connections to gravitomagnetism and Mach’s principle, to
an accuracy approaching 0.3%.

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 52–82, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Fig. 1. The Two Relativity Effects Predicted by Schiff.

A crucial feature of GP-B is that it is ‘a controlled physics experiment’. It is
so in two senses. In the first place the two relativistic effects dominate the data:
error terms such as the Newtonian drifts of gyroscopes are reduced to negligible
values. Second, no less important, designed into the experiment is a rigorous
program of on–orbit verification and calibration in which mission parameters
are varied in a controlled way to check and, if necessary, remove specific sources
of err or.

After many years of technology development, GP-B is now nearing comple-
tion. Final assembly of the payload with the spacecraft takes place in March
2001. Launch is scheduled for May 1, 2002.

It was not until late in 1959, 44 years after Einstein published his theory, that
any conceptually new test of General Relativity was proposed. It was then that
two men, Leonard Schiff and George Pugh, in complete independence of each
other, were able to define one, or rather two, fundamentally new tests based
on observations of non–Newtonian precessions of gyroscopes in Earth orbit. Re-
markably, almost at the same time a number of other tests of the theory were
conceived including the Shapiro time delay ex periment and redshift tests lead-
ing to the Gravity Probe A sub–orbital clock experiment.Then came various
new or extended theoretical approaches, best known of which is the param-
eterized post–Newtonian (PPN) formalism due mainly to Kenneth Nordtvedt
and Clifford Will. PPN provides a framework for comparing metric theories of
gravitation; it has also suggested interesting new null experiments.

It is no accident that Schiff and Pugh came to their ideas just two years
after Sputnik. Both recognized that an orbiting gyroscope would experience the
geodetic and frame–dragging effects. They also saw that the performance of
a gyroscope in space is potentially much better than on Earth because of the
reduction in support force. Schiff’s principal contribution was to provide the first
elegant and correct derivation of the two effects. Pugh in a striking, too little
known paper (November 1959) gave an imp ressively complete error analysis of
a possible experiment. In particular he suggested for the first time the brilliant
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and far–reaching concept of a drag–free or drag–compensated satellite. Gravity
Probe B has evolved out of these early thoughts, together with discussions Schiff
had at Stanford in 1959–60 with William Fairbank of the Physics Department
and Robert Cannon of the Department of Aeronautics and Astronautics. From
there GP-B became a cooperative effort between the two departments, a most
for tunate occurrence.

Indeed, without a collaboration of this kind it is hard to imagine even at-
tempting a program involving so many diverse technologies. In this test of Ein-
stein, physics and engineering are inextricably linked. Important also has been
the presence on the Stanford campus of an infrastructure capable of making the
collaboration effective, provided by the interdisciplinary Hansen Experimental
Physics Laboratory (HEPL) with its long history of developing medium–scale,
long–term scientific programs. HEPL has prov ed to be an ideal administra-
tive vehicle for a mission of this complexity. In addition, a rarity on university
campuses, it offers an extended building with flexible high bay space and crane
coverage. To have such a building within easy walking distance of the two depart-
ments so that physics and engineering students, academic staff and faculty can
come together in a common enterprise is an extraordinary benefit. This happy
combination of circumstances, not planned in advance, deserves reflection. Oth-
ers int ending to perform fundamental space experiments may find it wise to
think through not only the experiment itself but the structures and expertise
that will be needed to make it happen.

No less important is to think through, in conjunction with NASA or the
relevant space agency, the relationships between academia and aerospace indus-
try. On GP-B with invaluable support from NASA Marshall Center, excellent
working relations were established with Ball Aerospace in the early study phase
of the program and subsequently in flight contracts with Lockheed Martin. In
establishing the university–industry relation it is essential to formulate a clear
plan of what should be done in academia and what in industry, and to devise a
suitable contractual vehicle for managing the industrial effort. In facing, as one
must, technical surprises, it is well to be prearmed as much as possible against
the contractual surprises that too often accompany them.

2 Shape of the Experiment

The GP-B Science Instrument Assembly (SIA) is illustrated schematically in
Fig.2. It comprises four gyroscopes with their spin axes aligned parallel to the
line of sight to the guide star and mounted in line in a quartz block structure,
to which is attached a reference telescope, all operating at a temperature of 1.8
K. The gyroscopes are fused quartz spheres 38 mm in diameter, coated with a
1.25 µm film of superconducting niobium, suspended electrically within fused
quartz housings by voltages applied to three mutually perpendicular saucer–
shaped electrodes, as illustrated in Fig.3. To support the rotor on Earth the
voltage required over the 32 µm gap is 650 V. In space it is reduced to 0.1 V.
The gyroscopes are spun up on orbit to about 100 Hz by means of helium gas at
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Fig. 2. The GP-B Science Instrument Assembly.

a temperature of 6.5 K running at sonic velocity through a differentially pumped
channel in one half of the housing.

The gyro readout is based on a special property of superconductors known
as the London moment. A spinning superconductor develops a magnetic field
aligned with its instantaneous spin axis, and this serves as a magnetic ‘pointer’
even in a perfectly round, perfectly uniform sphere. The direction of the London
moment, and therefore of the spin, is measured magnetically by a SQUID mag-
netometer connected to a four–turn superconducting loop sputtered on to the
parting plane of the housing. Because the spacecraft rolls around the line of sight
to the star the signal is chopped at roll rate, reducing limits on measurement
from 1/f noise. The roll period is between one and three minutes (17 to 5.5
mHz). At 5.5 mHz the noise performance is about 7× 10−29 J/Hz, equivalent to
resolving 1 mas1 in an integration time of 7 hours, meeting the GP-B mission
goal of 1 mas in 10 hours.

More generally, rolling the spacecraft proves to be a very important overall
symmetrizing principles, averaging out other potential sources of error in Gravity
Probe B: drifts in the telescope readout, and many of the Newtonian drift torques
on the gyroscope.

The SIA is enclosed in a cylindrical cryogenic vacuum ‘probe’, 0.3 m in di-
ameter and 2.4 m long, inserted into the inner well of a dewar vessel containing
2400 l of superfluid helium (Fig.4). The dewar, which maintains cryogenic tem-
peratures on orbit for 18 months, serves as the main structural element of the
spacecraft. Boil–off gas from the dewar, vented through proportional thrusters,
provides thrust authority for attitude, translational, and roll control. Also shown
in Fig.4 is a sunshade that prevents scattered sunlight entering the telescope.
1 1 mas = 1 milli–arc–second.
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Fig. 3. The GP-B Flight Gyroscope: Note the difference between the two halves of the
gyro housing. Each has three circular support electrodes, but the one on the right has
the differentially pumped spin–up channel, while the one on the left has the supercon-
ducting loop sputtered on to its parting–plane.

An essential feature of the experiment is the provision of both dc and ac
magnetic shielding. For the London moment readout to work, the field trapped
in the gyro rotor during cooling through its superconducting transition temper-
ature must be below the extremely low value of 3 × 10−10 T – well below the
limit achievable in practice by conventional ferromagnetic shields. Equally im-
portant is to eliminate ac disturbances from external magnetic fields such as the
Earth’s: the required ac shielding fa ctor is 1012. These requirements are met
by surrounding the instrument with a nested series of conventional and super-
conducting magnetic shields, and placing rigorous constraints on the magnetic
properties of the probe and SIA. To produce the required ultralow magnetic
field use is made of a technique developed originally by B. Cabrera, based on
expanding a succession of superconducting lead shields in the inner well of the
dewar. A conventional ‘cryoperm’ shield produces an initial ambient field in th
e well of about 10−6 T. Because the quantity conserved in superconductors is
magnetic flux (field times area), if a folded lead bag is cooled in this low field
and then expanded, the new field level will be substantially lower. The process is
then repeated with a second lead bag to obtain an even lower field. In practice,
with three expansions, field levels as low as 10−11 T are regularly obtained.

In their earliest proposals for an orbiting gyroscope experiment Pugh, and
independently Schiff and his colleagues, recognized that the performance of a
gyroscope would be greatly improved by operating in the low g environment of
space. The reason is simple. By far the most precise kind of gyroscope, then and
now, is an electrically supported spinning sphere. The simplest of the torques
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Fig. 4. The Science Mission Dewar and Probe-C: Cutaway view, with the Science
Instrument Assembly in position with its separate vacuum ‘probe’.

acting on such a suspended sphere is the ‘mass–unbalance’ torque which occurs
when an acceleration acts on a sphere that is perfectly round but not quite
perfectly homogeneous. The drift–rate Ω caused by an acceleration f at right
angles to the spin axis is

Ω =
5
2
f

vs

δr

r
(1)

where r is the radius and vs the peripheral velocity of the spinning sphere,
and δr is the distance between center of mass and center of support. For a
sphere homogeneous to 1 part in 106 with a peripheral velocity of 20 m/s the
resulting mean transverse acceleration required to reduce the drift–rate to 0.03
mas/yr is 4×10−12 g. This is an instructive number. It demonstrates the insight
of George Pugh – and also of B.O. Lange, who independently advanced the
same idea in August 1961 – in recognizing the need for drag compensation. The
acceleration levels on satellites at the GP-B altitude with normal area/mass
ratios are typically of the order 10−8 g. In Gravity Probe B as a drag–free
satellite rolling about the common axis of the gyroscopes the mean cross–track
acceleration will be below 10−12 g.

Arguments of the same kind developed in detail by G.M. Keiser and A.
Silbergleit, and discussed further in Section 4 below, establish that torques due
to the action of the suspension voltages on the out–of–roundness of the gyroscope
are reduced to similarly acceptable levels. In all, three different classes of errors
have to be considered in Gravity Probe B: gyro drift errors, gyro readout errors,
uncertainty in the proper motion of the guide star. Fig.5 gives current estimates
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Experimental Accuracy
Each gyroscope
0.25 mas/yr

Gyro Drift Relative
to Guide Star
0.22 mas/yr

Proper Motion
Uncertainty
0.15 mas/yr

Gyroscope Drift
0.08 mas/yr

Readout Accuracy
0.20 mas/yr

Overall Experiment Accuracy
(in mas/yr)

4 gyros — 0.018
2 gyros — 0.19
2 gyros — 0.21
1 gyro — 0.26
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Fig. 5. Expected GP-B Experiment Accuracy.

of each of these terms and the result for an overall experiment with one, two,
three, and four gyroscopes.

The spacecraft carrying electronics, telemetry, solar panels, mass trim mech-
anisms, a sunshield for the telescope, and other support equipment, fits around
the dewar. Fig.6 is a general view of GP-B in orbit.

3 Incremental Prototyping

From 1964 to 1984 the main effort on Gravity Probe B went to advanced tech-
nology development, along with Mission Definition and Phase A studies and
an in–house Phase B study performed at NASA Marshall Center. In US fiscal
year 1985 NASA decided to proceed with an instrument development program,
the Shuttle Test of the Relativity Experiment (STORE). As first conceived, the
object of STORE was to fabricate the Science Payload, and then launch it on
Shuttle for a seven–day rehearsal experiment that would tes t all systems in
space and operate the gyros at Shuttle acceleration levels. The Payload would
then be returned to Earth, mounted into the spacecraft, and launched once more
by Shuttle from the SL-6 Western Test Range at Vandenberg Air Force Base in
California for release into a free–flying polar orbit.

STORE provided the essential mechanism for developing the Gravity Probe
B Payload. However, with the Challenger accident in 1986 and subsequent clo-
sure of the Western Test Range the planning had to be rethought. The new
constraints on Shuttle payloads and the fact that it was no longer possible to
launch Shuttle into a polar orbit were serious complications. A modified program
was therefore devised with an increased emphasis on incremental prototyping.
Although the main design principles of the Scienc e Instrument Assembly were
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Fig. 6. Gravity Probe B Spacecraft.

well established by 1985, the engineering challenge was formidable. Equally chal-
lenging was the design of the cryogenic vacuum ‘probe’ containing the SIA which
is complex and has many features unique to GP-B2. Thus the neck tube of the
probe must contain cooled radiation windows to intercept infrared radiation that
would otherwise be a severe heat load on the SIA and dewar. On the other hand,
it also must serve as a high speed pumping line to exhaust gas at low pressure
from differential pumping of the gyro spin system. It was by no means obvious
in advance how these two requirements could be reconciled.

Nor could the sophistication of the GP-B dewar be underestimated. Though
there was important engineering and flight heritage for superfluid helium dewars
from the IRAS and COBE programs, some of GP-B’s most critical features
were unprecedented in space. A major issue was the ultralow magnetic field
requirement, which demands having a permanently cold superconducting lead
bag in the inner well of the dewar and therefore inserting the warm probe into
the cold dewar. This is an intricate process in which it is necessary to mount
a temporary airlock on top of the dewar to prevent solid air from condensing
into the inner well. Once in place, the probe has to be locked down thermally
and mechanically at appropriate poins in the dewar. Incremental prototyping
has helped immensely in arriving at a sound design and establishing correct
insertion procedures.

Incremental prototyping attacks the hardest engineering problems first by
using full–size flight prototypical designs with flight interfaces, but with reduced
2 Following standard cryogenic engineering practice, reference is made in this paper to
three successive cryogenic ‘probes’ to be inserted into the dewars, Probe-A, Probe-B,
Probe-C; this terminology is not to be confused with the use of the word ‘probe’ in
Gravity Prob e B.
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functionality and without costly flight build standards. Specifically, three full–
sized payload system tests have been conducted with the three ‘probes’ of in-
creasing fidelity just referred to (A, B, C), where Probe-A is a pre–prototype;
Probe-B (designated as the backup flight probe) is essentially of flight–quality;
Probe-C is the actual flight probe. These have been evaluated in the following
successive ground–based tests:

A. First Integrated Systems Test (FIST) 1990–1991. FIST consisted of
a demonstration test of Probe-A in a semi–prototypical Engineering Devel-
opment Dewar (EDD) with science–mission–like interfaces. Probe-A incorpo-
rated a prototypical quartz block but no telescope and only two gyroscopes.
It operates in a magnetic field of about 10−6 T obtained with conventional
shields. The use of only two gyroscopes made additional electrical and other
connections available for instrumentation to investigat e the thermal and
vacuum performance of the probe.

B. Ground Test Unit GTU-0 1991–1994. GTU-0 was also performed with
Probe-A and the EDD but with an ultra–low magnetic field shield (10−11 T)
installed in the dewar. Cold insertion of the probe into the dewar by means
of the airlock resulted in low trapped flux in the gyroscopes.

C. Ground Test Unit GTU-1 1994–1995. GTU-1 was the first use of
Probe-B. It included: (a) operation with all four gyroscopes and a mass
model of the telescope; (b) achieving a < 0.1 nT trapped dipole in the gyro
rotor; (c) test of the fully coupled dc SQUID readout; (d) electromagnetic
interference (EMI) tests; (e) operation at ultra high vacuum with a sintered
titanium cryopump. Also performed at room temperature was a successful
protoqual shake test of the probe with the te lescope mass model and caged
gyroscopes, fully confirming the reliability of the design.

D. Ground Test Unit GTU-2 1997. GTU-2 was performed again with
Probe-B but mounted in the Science Mission Dewar (SMD). This provided a
verification of a complete payload integration and test procedures using the
SMD together with a full functional test of all subsystems (SIA, Probe and
Dewar) before and after an integrated system shake test at protoqual levels.

E. First Complete Payload Test August–December 1999. Results of
this test are discussed in Section 5.

4 Risk Mitigation and Verification Matrix

Developing a flight mission compels the physicist to address two interrelated
sets of problems very different from traditional laboratory experience. An ap-
paratus has to be made that will survive launch and function in the unfamiliar
environment of Earth orbit or outer space. It also has to work even though not
all aspects of its performance can be verified experimentally on the ground. Ad-
dressing these two issues requires, in the first place, systematic thought about
principles of risk mitigation and the c oncept of a verification matrix. Secondly
it requires a well–ordered test plan to assure that the risks and uncertainties
have indeed been properly accounted for.
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From an engineering standpoint ‘risk mitigation’ means first that the exper-
iment has to be designed conservatively to withstand the vibration of launch
and the temperature conditions and charged particle environment encountered
on orbit. In each case it is necessary to think not only of the design but of the
testing necessary to verify that the completed payload meets the engineering and
scientific requirements. Some of the following observations should be regarded
as general space practice; others are spec ialized to Gravity Probe B.

A. Surviving Launch: The Tradeoff Between Strength and Weight.
The recipe for surviving the hostile launch environment might seem simple –
extreme over–design so that the apparatus cannot possibly break. The flaw
in this simple nostrum is that there is another constraint, weight. It seems
almost a law of human nature that during the development of any spacecraft
its weight will grow beyond the capability of the launch vehicle. Always
at some point a strenuous program of weight reduction becomes necessary.
In Gravity Probe B the largest contributing factor was the hea vy outer
shell of the dewar, especially the two end–domes. After investigating several
options, including the use of special low–density alloys we chose the well
established but sophisticated method in which the inner surface is relieved
with suitably–patterned rib structures (an ‘isogrid’ design). The final effect
was a reduction of dewar weight of about 18 percent. Another frequently
encountered weight penalty, surprising to the laboratory physicist, is from
the electrical harnesses. Long experience ha s shown that these are always
underestimated. In Gravity Probe B we were fortunate to begin harness
layout early and were thus subject to less surprise than some programs have
been.
More generally, the physicist engaged in a space program is impressed to
observe that through all the development a constant weekly watch has to be
kept on weight and power budgets.

B. Temperatures of Electronics Boxes: Two Issues and Their Reso-
lution. The conditions under which electronics boxes have to function in
space are very different from those typical of ground–based laboratories. In
Gravity Probe B the surface temperature of the spacecraft is around 220 K
(−50◦C). Also as it rolls around the line of sight to the star the electronic
boxes will heat and cool in the presence of the Sun. This is a critical point in
the design because it limits the accuracy of our earlier statement that rolling
the spacecraft eliminates readout errors and gyro suspension torques. Obvi-
ously, if the temperatures of key components vary at roll–rate the statement
is no longer quite true. In building the electronics, therefore, thermal risks
of two distinct kinds must be mitigated. They must have the engineering
robustness to work under extreme conditions. They must also have the sci-
entific refinement to maintain temperatures within a very narrow and known
range over each roll cycle. Both constraints must be met in a situation where
the electronics components are functioning in hard vacuum: any heat has to
be removed by radiation or solid conduction, there is no atmospheric con-
vection to aid us. These conditions require a ground verification program
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of very considerable sophistication and have a critical influence on space-
craft design. Key electronics boxes are enclosed in a Forward Electronics
Enclosure (FEE) at the front end of the spacecraft with passive temperature
control; within the individual boxes active temperature control is applied to
certain particularly sensitive elements. As part of the on–orbit verification,
temperature data is telemetered to ground.

C. The Charged Particle Environment. The presence of the Van Allen
belts at or a little above the 640 km Gravity Probe B orbit altitude places
requirements on the GP-B electronics different from anything encountered
on Earth. Particularly critical are the effects, well known to space engineers
but less familiar to most physicists, of the South Atlantic Anomaly (SAA).
The old discovery by Gauss in the 1840s that the Earth’s magnetic field
can be represented by a tilted dipole displaced toward North modifies the
lives of space scientists. Over the South Atlantic there is a region where
for a period of 5 to 15 minutes the spacecraft e ncounters a much higher
density of charged particles than elsewhere in its orbit. Since the Earth is
rotating the SAA does not affect GP-B in every orbit; nevertheless there
are several each day in which the charged particle environment is hostile.
An obvious question is what effect this may have on the gyro and telescope
readouts. Tests of the SQUID magnetometers in a special facility at the
Paul Scherrer Institute in Villingen, Switzerland designed to provide in a few
hours a particle dosage equivalent to a year’s passage through the SAA were
pleasantly reassuring. The SQUIDS continued to function with only a small
and acceptable number of measurable ‘flux–jumps’. On the other hand, with
the telescope detectors some periods of interruption will certainly take place.
Throughout the electronics ‘rad–hardened’ components must be used in all
critical areas, and the design must be made ‘robust’ so that any temporary
electronics failure will not have catastrophic effects. Most critical of all is the
digital gyr o suspension system. To guard against upsets of the computers
controlling the suspension it is designed with two parallel control computers,
a backup analog suspension system, and an arbiter to monitor performance
and determine which system shall be used.
Such are the complexities of gyro suspension. In addition, it is necessary to
prevent excessive charging of the rotor itself. For this purpose the charge
on the rotor is measured by injecting a signal into the suspension system
and the information so obtained is used to control an ultraviolet discharge
mechanism based on the photoelectric effect.

D. Electromagnetic Interference (EMI) and Compatibility (EMC).
The issue of electromagnetic interference is familiar to physicists engaged in
ground–based experiments. Nevertheless space in general, and Gravity Probe
B in particular, have special problems. The compactness of the spacecraft
means that unusual care is needed to insure that signals from the telemetry
of the science data to Earth do not interfere with the payload electronics.
There is also the bizarre–seeming fact that in low–Earth orbit signals from
television stations on the ground ca n be a formidable problem. In Gravity
Probe B a special issue is that the gyroscope readout based on the London
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moment depends on accurately measuring very minute changes in magnetic
fields and therefore extremes of magnetic shielding. In addition, each gy-
roscope must be shielded from the next and the readout of each must be
shielding from its own gyro suspension signals. Without superconducting
shielding and frequency separation between the suspension and readout sig-
nals, these requirements could probably never have been met. The fact that
they were, as demonstrated in the tests of Probe-C discussed below, is one of
the most reassuring results of the GP-B development. It is a success critically
dependent on incremental prototyping.

Mitigating risk is a total process requiring judgments of many diverse kinds.
Risks need to be identified but they need also to be weighed intellectually and
sometimes even literally. If a particular mitigation adds to the weight of the
spacecraft, it may in that form be impracticable. Then there is the complicated
question of complexity. Does the mitigation achieved by introducing a redun-
dancy so increase the complexity that in the end it increases rather than reduces
risk? All such issues have to be addressed in a context of cost, recognizing that
in space programs cost penalties are of two kinds. There is the immediate cost
of designing, fabricating, and testing some previously unplanned part or system
but there is also the secondary, often far greater, problem of the ‘marching army’.
Any schedule delay increases cost far more than one at first imagines because it
entails keeping a large spacecraft team together longer than originally planned.

Mitigation involves assessment and planning; it also involves verification. Re-
flection on that fact leads to the important concept of a ‘verification matrix’. In
any actual spacecraft there are many systems. Some have been flown many times.
Others are new but very similar to systems that have been flown before. Others
again are new but capable of being tested with greater or lesser completeness in
the laboratory. Finally, others may not be capable of being tested at all before
launch and can only be verifie d through calculation. The idea of a verification
matrix is to lay out in a orderly way all the systems, their requirements and the
nature of the verifications to be performed: inspection, similarity, analysis, test,
and once that is done to establish, and where necessary enhance, the realism of
the verification process.

As an example consider Newtonian disturbances of the Gravity Probe B
gyroscopes. Almost by definition gyro performance cannot be fully verified until
GP-B is on orbit: if it could, one would be seeking to perform the experiment
in a ground–based laboratory. That, however, does not preclude a rationally
conceived and experimentally well–founded verification process. During the long
history of Gravity Probe B an exhaustive error analysis has been conducted
identifying no fewer than 120 different known class ical gyro torques, most of
them exceedingly small. The verification questions are whether all these have
been calculated correctly and whether any significant torques might have been
left out.

A broader view reveals that the torques can be classified in a number of ways
which allow plausible comparisons of their relative values and aid in setting rea-
sonable limits on unknown terms. One distinction is between support–dependent
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torques (which decrease in space) and support–independent ones. Another is
between torques due to pressures on the surface of the gyro rotor and those
arising from momentum transfer through the volume of the material. A third
is between torques varying linearly with time a nd those like Brownian motion,
photon bombardment, and the impact of cosmic rays on the rotor which tend to
cause ‘random–walk’ effects evolving as the square root of time. Simple as these
distinctions are, they throw a flood of light on the expected performance of the
experiment.

Thus, the two obvious classes of torque involving surface pressure are those
from gyro suspension and from residual gas in the housing. The ‘electrical pres-
sure’ has to be such as to apply to the rotor accelerations of order 10−8 g. At the
planned operating gas pressure (10−12 torr) the corresponding acceleration un-
der the extreme assumption that all the pressure acts on one side of the rotor is
10−13 g. Hence, it is inherently plausible – and true – that gas–pressure torques
are neg ligible and all our attention should be focused on electrical pressures,
i.e. on the suspension torques.

In fact, the suspension torques dominate the gyro performance. The analysis
by Keiser and Silbergleit demonstrates that these electrical suspension torques
are governed by 15 distinct coefficients. A laboratory verification, therefore,
should evaluate each one and establish their consistency with other measured
parameters, e.g. out–of–roundness of the gyro rotor, rotor centering, spin–axis
alignment, etc. Measurements on a flight type gyroscope suspended against 1g,
performed at Stanford by Dr. Yoshimi Ohshima, have successfully determined
all 15 coefficients.

With the coefficients known, classical electrical formulae based on Coulomb’s
law determine the resultant gyro drifts to be expected on orbit. This is a powerful
verification. Fig.7, based on the analysis of G.M. Keiser and Silbergleit, gives the
top eight non–relativistic terms contributing to the precession of the gyroscope
in the plane of the frame–dragging effect.

Of these no fewer than seven are support dependent torques and of the seven,
four originate in imperfect roll–averaging due to heating and cooling of the elec-
tronics as the spacecraft rolls in the presence of the Sun. We are thus led to
a further verification. By determining in the laboratory the temperature coeffi-
cients of key electronics systems, one can set criteria on their allowed tempera-
ture variations in space. This, in turn, leads to an on–orbit verification through
measuring and transmitting to E arth a record of the temperatures. It is even
possible to use this record as a mode of on–orbit calibration allowing errors to
be backed out by calculation after the fact.

Although the argument from pressure eliminates the most obvious gas torque
it does not guarantee that the residual gas has no effect. Molecules continually
moving back and forth between the rotor and housing cause the gyroscope to
slow down. If there is any asymmetry in this process it will result in a gyro
drift due to ‘differential damping’. At 10−12 torr the characteristic spin–down
time of the gyroscope is 320,000 years. For GP-B the rolling of the spacecraft
around the line of sight to the star h as a powerful symmetrizing effect and the
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A. Support–dependent torques from temperature variations of suspen-
sion electronics at spacecraft roll–rate (1,5,7,8)
1. Roll–variation of preload voltage difference (ha − hb)
5. Fixed sums of preloads (ha + hb, hc)
7. Roll–variation of sensing bridge voltages
8. Roll–variation of preload sums (ha +hb, hc) plus fixed miscentering of rotor

Note: all above are conservative upper limits, awaiting calibration of flight Elec-
tronics. Also, temperature variations of electronics will be measured On
orbit.

B. Support–dependent torques from non–temperature–dependent ef-
fects (3,4,6)
3. Gyro spin axis misaligned with spacecraft roll axis
4. Constant transverse acceleration on gyro parallel to Earth’s gravity gradi-

ent. Acting through misalignment between orbit plane and line of sight to
star.

6. Sagging of gyroscope at twice orbital period due to Earth’s gravity gradient
C. Support–independent torque (2)

2. London moment coupling to local magnetic shield–gyro axis misaligned with
line of sight to star

Fig. 7. The Top Eight Gyro Drift Torques.

computed value of this differential damping torque is below 0.0001 mas/year.
While this in itself is beyond ground verification, there is an important ground
verification related to it, namely, to measure the characteristic spin down time
of the gyroscope under laboratory conditions. The measurements confirm the
accuracy (at low temperature) of the gas drag formula. They also provide a
crucial check on whether any debris are present in the housing.
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5 Probe-C Assembly March–August 1999

Assembling the SIA and the Flight Probe has been a lengthy process, lasting
more than 6 months. Individual systems and subsystems had to be fully qualified
before assembly, all under the discipline of record keeping and Quality Assurance
unfamiliar to most physicists. In total Gravity Probe B had 32 distinct mechani-
cal and electrical systems that required verification through the Probe-C tests. It
is only through dealing with an apparatus of this sophistication that the physicist
comes to realize the benefi ts of the rigorous QA procedures developed through
hard–won experience in the aerospace business.

Among the systems tests that were performed before the assembly of the SIA
and Probe-C began some of the more important were as follows:

A. Gyro Qualification. To date, more than 110,000 hours of gyro testing
have been conducted in a variety of cryogenic and room temperature test
facilities. The final qualification of the individual gyroscopes to be inserted
in Probe-C was carried out in a special Gyro Acceptance Facility designed
to allow the verification that each gyroscope meets five flight requirements:
(1) asymptotic spin speed > 100 Hz; (2) spin–down rate after evacuation
< −2 mHz/hr (verifying gyro cleanliness); (3) low trapped magnetic field
< 3 × 10−10 T; (4) discharge rate by ultraviolet system > 10 fA/µW (in
combination with the charge measurement system, this will allow the mean
rotor voltage to be kept < ±10 mV); (5) SQUID–dc coupling < 1% decay
of 200 flux quanta after 15 min (verifying integrity of the readout loop).

B. Qualification of SQUID Assemblies for Gyro Readout. Each SQUID
assembly consists of a SQUID microchip sensor mounted on a sapphire circuit
board with a superconducting thin–film input transformer, electronic com-
ponents, and connectors, filter components for rejection of electromagnetic
interference, all contained within a superconducting box made of “reactor
grade” niobium and sealed with an indium alloy gasket. The SQUID chip was
initially selected for low noise by cryogenic testing. It was then mounted into
the SQUID assembly, which was subjected to cryogenic qualification testing
to determine sensor noise, linearity, transfer function, temperature sensitiv-
ity, bias current level, stability, the superconducting persistence of the input
circuit, and magnetic and EMI attenuation. Only assemblies that meet all
qualification criteria are accepted for use in Probe-C, and only SQUID sen-
sors that have remained stable through multiple thermal cycles to cryogenic
temperatures are incorporated in these assemblies.

C. Magnetic Qualification of Probe Components. Control of the mag-
netic properties of materials and assemblies used in Probe-C is essential for
the London moment readout. To meet the necessary stringent requirements,
a Magnetic Control Plan was set up dividing the Probe into magnetic zones
based on distance from the gyroscope rotors. Within each zone, limits were
placed on the residual magnetic moment and magnetic susceptibility of each
component, and on the maximum level of stray ac magnetic field. Samples
of the actual material stocks, from which probe components had been fabri-
cated, were characterized magnetically at temperatures down to 2 K using a
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Fig. 8. GP-B Telescope: The cylindrical structure in the center contains the image
dividers. The mirror on top of it aids in telescope testings. The two DPA’s, each with
redundant detectors, are mounted in the two structures set at 90 degrees of each other
on the edge of the telescope.

SQUID magnetometer. Once fabricated, the assemblies were further tested
for magnetic cleanliness with a SQUID gradiometer to verify that machining
and assembly operations did not introduce unacceptable magnetic contami-
nation.

D. Telescope Qualification. Fig. 8 illustrates the front end of the completed
Flight Telescope, fabricated entirely of fused quartz and held together by
a silicate bonding technique invented by Dr. Jason Gwo. It is a folded
Cassegrainian system, of 3.75 m focal length and 0.15 m aperture, and a
physical length of 0.32 m. Two star images are formed, one for each readout
axis; the images are divided at two orthogonal roof prisms and the inten-
sities of the divided beams are compared in redundant D etector Package
Assemblies (DPA), operating at a temperature of about 70 K, mounted on
the front end of the Telescope.
The Flight Telescope was the third in a series whose evolution is another
illustration of incremental prototyping. In fact, incremental prototyping ap-
pears equally in testing the telescope testing. No fewer than three artificial
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Fig. 9. SIA in Advanced Stage of Assembly: Note the suspension cables and two of
the four SQUID boxes mounted on the upper side of the ‘bird–cage’.

stars have been constructed to evaluate its performance. The one used for
qualification was the second, on which a vibration–isolated dewar vessel was
mounted to allow testing both at room temperature and low temperatures.
Tests of the DPAs were performed separately to determine no ise perfor-
mance prior to their installation on the telescope. Linearity measurements
with the artificial star demonstrated that the telescope would remain linear
to < 3 mas over a range of ±20 mas, meeting the requirements of spacecraft
pointing control.

With the individual systems for the Probe and SIA all qualified, it became
possible to proceed to final assembly conducted in a class 10 clean room at Stan-
ford. The Quartz Block/Telescope structure was inserted into an inner frame-
work (the ‘bird–cage’) in the Probe, followed by the exacting process of insert-
ing and aligning the gyroscopes into the Quartz Block with their centers within
50 µm of a common line. (Hence, when the spacecraft has been mass–balanced
on orbit, the gyroscopes will be w ithin that 50 µm radial distance from the roll
axis, minimizing the centrifugal acceleration to which they are subjected). Fig.9
illustrates the SIA in an advanced stage of assembly showing the suspension
cables, SQUID assemblies, gyro caging line, and fiber optic cable for uv charge
control. The final tests performed before inserting the Probe in the dewar were
a room temperature spin test for all four gyroscopes, measuring the spin–down
rate after evacuation and thus verifying once more that the gyr os were free from
particle contamination, and a telescope field–of–view test.
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Fig. 10. Probe-C in Airlock Ready for Placement on Science Mission Dewar.

6 Probe-C Testing in Science Mission Dewar
August–December 1999

Because the ultra low magnetic field shield is maintained permanently in the
inner well of the SMD, the process of inserting the Probe is, as remarked earlier,
an unusual one. Whereas in almost all cryogenic systems the probe is inserted
before the dewar has cooled down, here a method had to be developed for in-
serting a warm probe into a cold dewar. In doing so, it is essential to avoid
condensing any solid air into the dewar well. The method (devised by B. Cabr-
era) is to make use of a cylindrical air lock within which the probe is fitted with
a tight piston seal. By mounting the probe and air lock on top of the dewar
it is then possible to pump out any air and backfill the air lock with helium
gas prior to insertion. Insertion has to be performed sufficiently slowly not to
generate excessive heat and warm up the superconducting lead shield. To aid
in this process, the dewar well is filled temporarily with liquid helium prior to
insertion. Fig.10 shows Probe-C mounted in the airlock ready for placement on
the dewar in its vertical position.

Probe-C was inserted into the Science Mission Dewar on August 24, 1999
and testing was continued until December 15. Fig.11 shows the assembled probe
and dewar under test at Stanford in a horizontal position.

At an early stage it became clear that there was a significant, quite unex-
pected anomaly in the thermal performance of Probe-C, which would require
a recycling to room temperature. However, rather than immediately warming
up we decided to ‘retire risk’ by completing the entire range of planned qualifi-
cation tests on every one of the 32 major subassemblies contained in Probe C
and the SMD. 28 out of 32 met or surpassed the stated requirements; 3 more
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Fig. 11. Probe-C under test in the SMD in a Horizontal Position: The dewar can be
tilted through a range of angles to perform different tests.

discrepancies (1 significant, 2 minor) were uncovered in a ddition to the thermal
anomaly named above. These discrepancies were of a character that would not
have prevented launching a successful mission but the necessity of warming up
has given the opportunity to address them all.

A. SIA. Tests of the SIA covered 7 major subassemblies and 1 systems test as
follows:
• Telescope: testing with artificial star # 3 (designed to mount on the
SMD) verified performance under final operating conditions. The optical
transmissivity and the strehl ratio (which measures the quality of the
final image) surpassed the requirements. All 8 detectors in the two DPAs
functioned correctly. The noise performance for the selected guide star
HR 8703 meets the 10 mas/

√
Hz pointing requirement.

• SQUIDs: all 4 SQUIDs function correctly, with noise performance meet-
ing, and in 2 of the 4 surpassing, the requirement by a factor of 4. In
separate tests of electromagnetic compatibility (EMC) with the Gyro
Suspension System the shielding was shown to fully met stated require-
ments.
• Gyro levitation and spin–down: all 4 gyroscopes met the levitation re-
quirements and the stated spin–down requirements, showing that at low
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temperature as well as in the earlier room–temperature tests the gyros
were free from particle contamination3.
• Gyro caging: tests of the caging mechanism met requirements both at
room temperature and low temperature.
• Gyro uv charge control system: all 8 systems (2 per gyro for redundancy)
functioned correctly yielding a photocurrent > 100fA/µW, surpassing
the requirement by more than a factor of 3.
• Gyro readout coupling: for 3 of the 4 gyros (## 1, 2, 3) the coupling of
the SQUIDs to the readout loop met the superconducting requirement;
for # 4 it showed resistance > 1, 000 Ω which is unacceptable.

• SIA sensors and wiring: all of the thermometric and other sensors on
the SIA functioned correctly, and all of the wiring met specifications;
there was one electrical short on the gyro # 4 suspension shields, which,
however, had no practical impact.
• Trapped flux in gyro rotors: As noted in C below, the ambient field in
the lead bag was < 2× 10−10 T. Trapped fields in 3 of the 4 gyroscopes
were below the 3×10−10 T requirement but in gyro # 1 (the one nearest
the top of the bag) field levels were anomalously high (10.6× 10−10 T).

B. Probe-C. The 3 principal system entities: (1) plumbing; (2) sensors and
wiring; (3) radiation windows, met their requirements, with the exception of
minor leaks in the caging lines and one valve. The practical impact of these
minor leaks would have been negligible but since the probe has been warmed
up they are being repaired. Transmission through the windows exceeded 80%.
The vacuum integrity of the probe fully met its requirement. The failure in
thermal performance is discussed below.

C. Dewar. The 4 principal system entities: (1) plumbing; (2) sensors and
wiring; (3) low–temperature valves; (4) ultralow magnetic field shield met all
their requirements. The magnetic field level in the lead shield was < 2×10−10
T. The vacuum integrity and thermal performance also met all requirements.

D. Interfaces. Interface requirements had to be, and were, met for 3 systems:
(1) SIA–to–Probe; (2) Probe–to–Dewar; (3) the Belleville–washer preload
system to maintain thermal contact between Probe-C and the SMD.

The foregoing tests were highly successful in retiring risk. At the conclusion
of this phase of payload testing 90% of the required systems verifications had
been completed.

7 The Four Discrepancies
and Their Resolution August 1999–June 2000

Considerable work was done to characterize the four discrepancies while Probe-C
was still in the SMD. After its removal on December 15, 1999 new diagnostic tests
3 At a late stage of testing, some contamination from frozen gas occurred in two of the
gyros for reasons that are well understood. The gas disappeared on warming to room
temperature, leaving the gyroscopes once more free of contamination. Pr ocedures
are in place for preventing this contamination happening again.
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became possible which further clarified the problems and various experiments
and rehearsal tests were performed to validate the redesign. Rework commenced
on March 27 and was completed on June 2, 2000. Reinsertion of Probe-C into
the SMD will take place before October 18, 2000.

A. Probe-C Thermal Anomaly. To understand the thermal anomaly one
needs to grasp the principles governing the design of long hold–time helium
dewars.
Liquid helium, because of its quantum mechanical zero point energy, has
very low latent heat. Far more cooling–power is available from the warming
of the boil–off gas to room temperature than from the latent heat. In de-
signing helium dewars one makes use of this fact by intercepting much of the
incoming heat in ‘vapor–cooled shields’. With 3 to 4 suitably spaced shields
embedded in the multilayer insulation, it is possible to recover about 35%
of the available gaseous refrigeration and increase the dewa r hold–time by
a factor of about 25.
In Gravity Probe B this vapor–refrigeration must be applied not only to the
dewar but also to intercept heat radiated and conducted down the neck–
tube of the probe. Accordingly, as Fig.12 shows, radiation windows at 3
locations in the neck are connected to copper rings epoxied to its inner
surface. Matching copper rings on the outside of the neck connect these
thermally to corresponding cooled rings on the dewar neck. On orbit, where
the dewar skin temperature is 220 K, the nominal temperatures of the 3
w indows are 33 K, 77 K, and 132 K; a fourth ring (HEX # 4) without
a window operates at 157 K. On Earth with a skin temperature of 293 K,
the window temperatures are usually slightly higher; however, there is also
a special operating condition used mainly on the launch pad, in which the
lowest vapor–cooled shield is artificially cooled by means of a ‘guard tank’
full of ‘normal’ (i.e. non–superfluid helium) and therefore to operates at or
near 4.2 K. In the experiments to be discussed now, this was in fac t the
condition and window # 1 should have been at around 6 K.
This sophisticated design was prototyped in Probes A and B, and success-
fully demonstrated in both the EDD and the Science Mission Dewar. When
Probe-C was cooled down, however, very serious temperature anomalies were
observed. Instead of being at 6 K, as it should have been with the guard–tank
cold, window # 1 ran at 86.5 K! The temperatures of windows # 2 and # 3
and of Hex # 4 were also far too high. These drastic discrepancies strongly
suggested that the windows were receiving effectively no cooling from the
boil–off gas (in other words that there was a thermal disconnect somewhere
between the window and the vapor–cooled shields. A variety of tests pointed
to a thermal disconnect internal to Probe-C, probably between the copper
rings and the fiberglass–epoxy neck tube. Conclusive evidence came from
tests in which helium exchange gas was introduced into the probe at vari-
ous pressures with the system vertical to prevent convection. At 0.31 torr
the temperatures are reduced dramatically: the exchange g as provides an
excellent conductive path between the inner ring and the neck tube.
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Location Expected Observed Observed
(with guard–tank cold) (high vacuum) (0.31 torr)

Window # 1 6 K 86.5 K 26 K
Window # 2 22.5 K 122.2 K 31.5 K
Window # 3 72.3 K 171.3 K 77.3 K
Hex # 4 151.4 K 196.3 K 166.4 K

The conclusion has to be that the epoxying that had worked so well for
Probes A and B went wrong in Probe C. The very detailed written and
photographic QA record of the construction showed no discernible cause of
failure; nevertheless, failure there was, with three very serious implications.
First, the loss of thermal conductivity reduces the dewar hold–time on orbit
from 19 months to possibly as low as 10 months. Second, just as serious,
it reduces the ground hold–time in such a way as to make operations on
the launch pad almost impossibly difficult. Third and gravest of all, the
break between heat stations and neck tube makes the probe vulnerable to
mechanical failure under the vibration of launch.
A failure of this kind puts a space program into a new situation. To disas-
semble Probe-C and remake the epoxy bonds would take over a year and still
not guarantee success. Instead, the method GP-B has adopted is to short–
circuit the problem by a redesign which establishes direct thermal links be-
tween the outer and inner copper rings. At each heat station four holes are
drilled through the outer ring, the neck tube, and the inner ring ending as
a ‘blind hole’ that stops just short of penetrating through to the far side
of the inner ring. Thermal contact and mechanical integrity are established
by means of copper pins inserted into each hole with a tight ‘press–fit’. For
technical reasons two of the pins are inserted horizontally and two inclined
at 51 degrees. Fig.13 illustrates a cross–section of the pin and ‘blind hole’ for
one of the 51–degree pins. Vacuum integrity, which has of course been lost
by drilling through the neck tube, is restored by two stages of epoxy seal. A
low viscosity epoxy is injecte d into the hole around the pin and over this,
following a standard cryogenic practice, a ‘doubler’ in the form either of a
flat copper sheet or copper plug is sealed over each pin with an extremely
robust thermally matched epoxy rejoicing in the name “Blue Death”.
To assure success, rehearsals were performed on two prototype assemblies
with two alternative pinning procedures. Critical to the pinning solution is
the complex drilling process which has to be undertaken to penetrate first
a copper ring, then the composite neck tube, then the second ring, all with
perfect alignment and without penetrating beyond the blind end of the hole.
Since the pin has to be a ‘press–fit’, alignment and finish of the holes are
critical: it has been found necessary to drill each hole in six stages, with three
different kinds of drill. For the horizontal holes two of the stages required
carbide drills which are notoriously brittle; great care had to be applied
to avoid breaking off a drill partway through a hole. After many trials the
procedure was perfected and demonstrated to meet the three essential re-
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Fig. 13. Cross Section of Model of Probe Necktube with 510 Copper Pin. The section
shows the pin in position with the blind hole in the inner copper ring. Not shown is
the ‘doubler’ which completes the vacuum seal on the outside of the outer ring.

quirements, thermal, mechanical, and vacuum. Comparative experiments on
Probes B and C provided an unequivocal room–temperature diagnostic to
distinguish acceptable and unacceptable the rmal performance at low tem-
perature. Mechanical and vacuum integrity were validated as follows: Each
prototype assembly was vacuum tested; subjected to a vibration test at flight
qualification levels; vacuum tested again; twice cycled to low temperatures;
vacuum tested for a third time. Both pinning techniques met all require-
ments. Finally, on March 23, 2000 Probe C Redesign Readiness Review was
held and approval given to proceed with the rework using the particular
method discussed above.
In applying to Probe-C the experience gained during the rehearsals, it was
essential to take into consideration the issue of cleanliness. Debris or turnings
from the drilling process must, at all costs, be prevented from contaminating
the gyroscopes or soiling the surfaces of the telescope and radiation windows.
The drilling was performed in an ultra high quality (class 10) clean room at
Stanford, with the probe in an inverted position and at a slight overpressure
to drive any contamination outwards. It was accompanied by a continuous
vacuum cleaning around the hole. Drilling proceeded from the outside in,
removing one radiation window after another to gain access for measurement
of the position and alignment of the inner rings.
In fact, the entire operation went remarkably smoothly. Pinning was com-
pleted on May 15, 2000. After cleaning and reinstallation of the windows the
following tests were performed by June 2: (1) a static load test on window
frame # 3 at flight qualification levels; (2) the room temperature thermal
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performance test mentioned above; (3) a vacuum integrity test of the entire
probe. Prior to the installation of the pins the thermal conductance between
inner and outer rings was 0.028 W/K, after pinning it was 0. 42 W/K. This
factor of 15 in improvement was in excellent agreement with the data ob-
tained with the earlier validation units. The computed helium hold–time on
orbit (including a 30% allowance for conservatism) is 17 months. Vacuum
performance was excellent: there was no detectable leak even on the most
sensitive 3× 10−10 standard cm3/sec scale of the leak detector, a margin of
at least 4 orders of magnitude on the GP-B requirement.
As of mid–June 2000 Probe C is being prepared for room–temperature spin
tests of the gyroscopes to check whether cleanliness has been properly main-
tained.

B. Gyro # 4 Readout Ring Discrepancy. Beside offering a good oppor-
tunity for scientific detective work, the readout failure for Gyro # 4 nicely
illustrates the range of issues that need to be weighed in executing a space
program.
In the initial planning of Gravity Probe B the decision to have four gyro-
scopes was in some degree arbitrary (a tradeoff between redundancy and
complexity). Obviously, there ought to be more than one, but since each
gyroscope will measure both relativity effects a case can be made for flying
with only three. If there had been no other reason for removing the probe
from the dewar that would almost certainly have been the decision. However,
given the fact that the probe did have to be removed the option of re pair
becomes worth careful consideration.
The tests demonstrated that the entire SQUID readout unit was function-
ing perfectly; the fault lay in the failure of a superconducting bond on the
housing itself. The location of the high–resistance connection in the gyro–to–
SQUID input circuit was determined by measuring the frequency dependence
of the SQUID response to high frequency inductively coupled ac signals. Fre-
quencies above 100 kHz are outside the SQUID feedback circuit bandwidth,
so these measurements were made open loop (i.e., without feedba ck to the
SQUID). To obtain consistent measurements, the SQUID was dc biased to
the most linear portion of its characteristic curve. Input signals were limited
to no more than one tenth of a SQUID flux quantum in order to obtain a
reasonably linear output. The resulting data of SQUID output amplitude
versus frequency were compared to the predictions obtained from SPICE
circuit simulation results based on a circuit model with a resistive contact at
the gyroscope and a second model with the resistive contact in the SQUID
assembly. The experimental data fit the former model excellently and the
latter model not at all.
It is worth emphasizing that the failure of the superconducting bond on gyro
# 4 was not entirely unexpected. During earlier qualifications of gyroscopes
it had been found that the original design was somewhat unreliable and
occasionally failed on initial cool–down. Accordingly, a new more reliable
design of bond was developed, which has shown no failures, and this was
used for gyros # # 1, 2, and 3. For gyro # 4 a compromise was made. A
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gyroscope was available which was so excellent in other respects that we
decided to use it despite having a bond of the original design, the argument
being that in the past, once such bonds were qualified, they always withstood
repeated temperature cycling.
Repairing the bond simply means replacing the gyroscope. Although the SIA
is designed to allow such a substitution, the process has never actually been
tried and does entail risk. The cables and connections to the old gyroscope
have to be severed and unstaked without damaging or contaminating the
assembly; the gyro has to be removed and replaced; and numerous tests have
to be performed prior to resealing the probe. Before finalizing the decision,
a rework team has been set up to rehearse the process in a ba ckup Quartz
Block Assembly containing two gyroscopes left over from earlier prototyping
activities. The results are encouraging; a decision will be taken in June 2000.

C. High Trapped Flux in Gyro # 1. The 10.6×10−10 T trapped field in gyro
# 1 was rather a surprise because in Probe-B, where less attention had been
paid to magnetic cleanliness, there had been little difficulty in obtaining
3 × 10−10 T trapped fields in all four gyros. Three possible explanations
suggest themselves: (1) a change in magnetic field level in the lead bag; (2)
magnetic contamination in the probe; (3) a thermal effect connected with
the Probe-C anomaly.
The first conjecture was that there had been a field change in the lead
bag. The reason for suspecting this was that during cryogenic operation a
‘thermal spike’ had occurred which could have heated the top end of the bag
above its superconducting transition temperature. However, after removing
Probe-C from the dewar and carefully remeasuring the field at all levels we
found the field completely unchanged. Magnetic contamination remains a
possibility, though in view of the extreme care taken in material screening it
seems unlikely. The most probable explanation is a temperature effect.
The hypothesized source is the Thomson effect. As is well–known, Thomson
in the 1850s showed from thermodynamical reasoning that when any metal is
subjected to a temperature gradient, a voltage difference will be established
across it. What is less well–known is Thomson’s second discovery (1895)
that if the metal is anisotropic circulating currents can be set up generating
magnetic fields. At low temperatures, this effect becomes much larger as
was discovered by a GP-B graduate student, P.M. Selzer, in 19 74. The
argument, therefore, is that the thermal anomaly in Probe-C produces just
such a temperature gradient in the metal around the SIA, at its upper end,
and that the most likely cause of the anomalous field in Gyro # 1 is this
Thomson–Selzer effect. Final verification will only be possible after insertion
of the reworked probe into the SMD.
Two possibilities therefore confront us. First that on cool–down the anomaly
will have disappeared. Second that for magnetic contamination or some other
reason the trapped field in Gyro # 1 will still be anomalously high, in which
case the question is, how problematical that will be for the experiment.
Detailed analysis by J.M. Lockhart demonstrates that while the 3×10−10 T
nominal requirement remains a desirable goal, the readout is actually more
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‘forgiving’ than had originally been thought, and there will be little or no
loss in final accuracy of the measurement.

D. Leaks in Caging Lines, etc. During the course of the reworking of Probe-
C in the clean room at Stanford repairs were effected to the caging lines and
these were further secured by the addition of ‘doublers’ similar in principle
to the doublers on the pinning system.

8 Spacecraft, Electronics Systems, Integration & Test

Reflection about Gravity Probe B rightly concentrates first on the Science In-
strument with its cryogenic and mechanical refinements but no account of a
space mission can end there. The following is a brief summary of the main other
aspects of the mission.

8.1 Spacecraft

Gravity Probe B is unusual in that its main structural element is the Science
Mission Dewar. To it is attached the Spacecraft, a welded aluminum framework
that fits around the lower end of the SMD and carries the solar panels, harnesses,
spacecraft electronics, and other support equipment Fig. 14.

Mounted on the front end of the SMD in close proximity to Probe-C is a
Forward Electronics Enclosure (FEE), which provides a highly stable thermal
environment with extensive shielding against electromagnetic interference and
coupling for the key payload electronics boxes. Also mounted on the SMD is
the telescope sunshield. The combined weight of spacecraft and payload is 3241
kg. The power requirements are 293 W for the spacecraft and 313 W for the
payload, (606 W total) during normal operation; during initial setup, however,
the requirement rises at certain intervals to 713 W. For an inertially fixed rolling
spacecraft such as GP-B the power output from the sola r panels at any moment
depends on their geometry and the orientation of the spacecraft with respect to
the Sun. Allowance has to be made for degradation over the course of the mission.
The system, as designed, has beginning–of–life and end–of–life capabilities at
worst–case seasonal minimum of 731 W and 703 W respectively. At the currently
scheduled May 1, 2002 launch–date the actual capability is 873 W at launch
declining to 737 W in early June, a sufficient margin over the 713 W initial
requirement.

As of June 2000 the spacecraft is 85% complete. Most of the subsystems, me-
chanical and electrical, are flight–proven. In total there are 21 electronics boxes
representing 12 distinct electrical systems all (except for Attitude/Translational
Control) flight–proven or close derivatives of flight–proven systems. All have
been installed on the Spacecraft. All electrical harnesses are complete. Two and
a half of the four solar panels are complete. The spacecraft flight software coding
is complete and in veri fication test.

Straightforward as most aspects of the GP-B spacecraft are, two of the me-
chanical systems essential to the success of the relativity measurement are de-
cidedly unusual. One is the use of helium proportional thrusters for attitude and
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Fig. 14. The GP-B Spacecraft: The spacecraft fits around the lower end of the SMD.
Among the items visible in the photo are two long rectangular boxes containing two of
the seven mass–trim mechanisms.

translational control; the other is having a set of 7 mass–trim mechanisms to bal-
ance and align the principal axes of the spacecraft. Each mass trim mechanism
consists of a 20 kg weight mounted in a closed rectangular box and adjusted in
position by a lead screw driven by a ste pper motor. These mechanisms have
been subject to a very extensive qualification program and are now installed on
the spacecraft; 4 are mounted transversely to move the axis of rotation laterally
until it coincides with the line through the center of the gyroscopes to within 0.8
mm. The other 3 are parallel to the spacecraft axis and adjust the direction of
the principal axes of inertia. Trimming is performed intermittently as the helium
is depleted, probably a few times during the course of a year.

In most spacecraft with gas–jet attitude control systems constraints on gas
consumption set by weight dictate the use of on–off valves fired only on de-
mand. To apply this method to GP-B with its very fine pointing requirement
(∼ ±20 mas) would take a space–qualified valve capable of reseating perfectly
hundreds of millions of times, a severe reliability problem. Fortunately, there is a
way. Already on board is a supply of gas that must be vented – the helium boil–off
from the dewar. By directing this continuously through pairs of opposed nozzles
operated as ‘proportional thrusters’ one obtains a control system that is at once
smoother and mechanically more reliable than the conventional kind. A striking
feature is the low Reynolds’ number (∼ 30) in the throat of the valve. Work by
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a succession of GP-B graduate students, J.S. Bull, J.–H. Chen, P. Wiktor, and
Y. Jafry, has led to a design subsequently further developed and space–qualified
by Lockheed Martin that meets all of GP-B’s r equirements, provided the orbit
altitude exceeds about 600 km. Fig.15 illustrates the flight thrusters.

Fig. 15. Proportional Helium Thrusters
(Flight Unit).

Control is maintained in all three
modes, pointing, drag–free, and roll,
from signals derived respectively from:
(1) the science telescope, (2) either of
two science gyroscopes operated drag–
free, (3) conventional rate–gyroscopes
mounted on the spacecraft, updated
by signals from a ‘star–blipper’ pick-
ing up a band of stars spread over the
heavens at an angle to the roll axis.
The pointing accuracy good to about
10 mas, the residual cross–track aver-
age acceleration to better than 10−12

g, the roll- -rate to about 1 part in
105. The translational controller is de-
signed to force the center of rotation
of the Spacecraft into coincidence with
the line through the gyro centers. The mass–trim mechanism brings it within
0.8 mm; the translational controller brings it to 50 µm, that is, to within the
limit to which the gyros are aligned.

GP-B has 16 thrusters mounted on fixed struts extending out from the Space-
craft, with geometrical and internal redundancies such that any four systems can
be allowed to fail with no loss of control performance.

8.2 Payload Electronics

In contrast to the spacecraft electronics, based on flight–proven hardware, almost
all of the payload electronics are new. Altogether there are 5 systems, containing
a total of 15 electronics boxes distributed between the FEE and a corresponding
Aft Electronics Enclosure (AEE) on the Spacecraft (the reason for this division
between forward and aft enclosures is that if all the boxes were mounted forward
it would unbalance the mass distribution of the space vehicle):

• Telescope Readout Electronics (TRE), 2 boxes, both forward;
• SQUID Readout Electronics (SRE), 4 boxes, 2 forward, 2 aft;
• Gyro Suspension System (GSS), 8 boxes, 4 forward, 4 aft;
• Experiment Control Unit (ECU), 2 boxes, 1 forward, 1 aft;
• Ultraviolet Discharge (UVD), 2 systems, 1 in each aft ECU box.

Only the UVD has been flown before.
An important lesson for the physicist in the world of space electronics is

that even when an engineering model of a flight unit has met all requirements
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there is still a long way to go before the actual flight unit is ready for installa-
tion. Procuring the right space–hardened components, assembling the flight unit
under full Quality Assurance, and completing all the tests that are necessary,
including vibration tests, is a major task. Among several common surprises is
the extraordinarily long procurement t imes for ‘mil–standard’ components. For
GP-B, engineering models of each unit have been fully tested in the laboratory
but as of June 2000 the only flight unit available is the TRE. For the other three
all components are in–house; the state of assembly is as follows. (1) SRE: all
16 boards complete. Aft–box passed all functional tests except vibration test;
forward–box in functional testing. (2) GSS: 10 of 14 boards assembled. For aft–
box, all 5 boards tested, conformally coded, and ready for board int egration. For
forward–box, 4 of 9 assembled, 2 completed testing, 1 also conformally coded.
(3) ECU: all 19 boards assembled, tested, and conformally coded. Box testing
ready to begin.

The most challenging to design of the Payload Electronics systems is the
GSS. It has to support the gyroscope with very low voltage (about 0.1 V) in
order not to generate suspension torques yet be able to switch instantly to a
higher level in emergencies. During gyro spin–up it has to exert an acceleration
of approximately 0.3 g on the rotor to balance the pressure from the spin–up gas.
Also during spin–up the center of the rotor has to be displaced in a controlled
manner toward the spin–up channel to r educe gas leakage over the wall of the
channel. All these operations have to be performed automatically without ever
allowing the spinning ball to touch the housing. The final design is a digital
system with two separate computers and an analog back–up, with an arbiter to
decide which of the three parallel systems should take command. Testing it on
Earth has been an interesting task. In addition to high voltage operation with
live gyroscopes, a gyro test bed has been constructed in which variable flat plat
e capacitors driven by piazoelectric actuators mimic the actual gyroscope under
controlled conditions.

The current schedule has the GSS completed by December 2000. The GSS
and SRE will be used in Probe-C evaluation on the SMD at Stanford early
in 2001 prior to shipment of the completed Payload to Lockheed Martin for
integration with the Spacecraft in April 2001.

8.3 Integration & Test, Ground Station, and Launch

The process of testing a completed payload and spacecraft is in general terms
well–established, though logistically it involves complications that a physicist
might hardly expect. For Gravity Probe B, in addition to elaborate acoustic,
modal, and end–to–end thermal vacuum tests, very careful spin balancing of the
spacecraft is necessary to bring it within the range of the mass–trim mechanisms.

The most unconventional aspect of the GP-B test program is the use of an
Integrated Test Facility (ITF) to check software and command/telemetry signals
at an early stage prior to transmitting new untested signals to the Spacecraft.
From the software point of view GP-B is an unusually complex spacecraft with



82 C.W.F. Everitt et al.

7 separate on–board computers, as well as an unusually large number of elec-
tronics boxes. To mitigate the difficulty the ITF was commenced very early in
the program and brought close to completion in 19 98, though even now not all
the hardware is installed for verifying performance of the 1553 computer and
command and telemetry signals. A constant difficulty in any test program is to
separate problems in the electronics from problems in the Test Facility itself.
A method of alleviating this has been devised. It consists of mounting in the
ITF the already tested engineering models of the different electronics systems,
so that it is possible to switch back and forth between them and the flight units.

No less challenging has been the development at Stanford of the Mission Op-
eration Center (MOC) and ground control software. The MOC communicates
through NASA Wallops Flight Facility’s Ground Network to a series of ground
stations located around the Earth. The primary stations in the Ground Net-
work are the Alaska Ground Station and the Svalbard, Norway Ground Station.
During set–up and, if necessary, emergency the Ground Network can be sup-
plemented by the NASA Tracking and Relay Satellite System (TRSS) Spac e
Network. And, finally, there is all the planning for the launch. The elaborate
preparations required, including safety, preparation of ground support equip-
ment, training of personnel, and the transportation of the spacecraft to the
launch site, are a whole story to itself.
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Abstract. The main theoretical aspects of gravitomagnetism are reviewed. It is shown
that the gravitomagnetic precession of a gyroscope is intimately connected with the
special temporal structure around a rotating mass that is revealed by the gravitomag-
netic clock effect. This remarkable effect, which involves the difference in the proper
periods of a standard clock in prograde and retrograde circular geodesic orbits around
a rotating mass, is discussed in detail. The implications of this effect for the notion of
“inertial dragging” in the general theory of relativity are presented. The theory of the
clock effect is developed within the PPN framework and the possibility of measuring
it via spaceborne clocks is examined.

1 Introduction

The close formal similarity between Coulomb’s law of electricity and Newton’s
law of gravitation has led to a description of Newtonian gravitation in terms of a
gravitoelectric field. The classical tests of general relativity can all be described
via post-Newtonian gravitoelectric corrections brought about by relativity the-
ory. Moreover, any theory that combines Newtonian gravitation and Lorentz
invariance in a consistent framework must involve a gravitomagnetic field in
close analogy with electrodynamics. The gravitomagnetic field is generated by
the motion of matter. For instance, the mass current in the rotating Earth gen-
erates a dipolar gravitomagnetic field that has not yet been directly observed;
in fact, the main objective of the GP-B is to measure this field in a polar Earth
orbit via the gravitomagnetic precession of superconducting gyroscopes on board
a drag–free satellite.

Gravitomagnetism had its beginning in the second half of the last century.
Developments in electrodynamics led Holzmüller [1] and Tisserand [2] to pos-
tulate the existence of a solar gravitomagnetic field [3]. In fact, attempts were
made to account for the excess perihelion precession of Mercury since the plan-
etary orbits would be affected by the gravitomagnetic field of the Sun. However,
the excess perihelion precession of Mercury was successfully explained by Ein-
stein’s general relativity theory in terms of a small relativistic correction to the
Newtonian gravitoelectric potential of the Sun. It was later shown by Thirring
and Lense [4,5] that general relativity also predicts a certain gravitomagnetic
field for a rotating mass, but the magnitude of this field in the solar system is
generally small and would lead to a retrograde precession of the planetary orbits.
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This Lense-Thirring precession of planetary orbits is too small to be detectable
at present.

For the purposes of confronting the theory with observation, gravitomag-
netic phenomena are usually described in the framework of the post-Newtonian
approximation; however, it is possible to provide a fully covariant treatment of
certain aspects of gravitoelectromagnetism [6,7]. In fact, extensions of the Ja-
cobi equation (i.e. the relativistic tidal equation) may be employed to identify
the gravitoelectric and gravitomagnetic components of the curvature tensor in
close analogy with the Lorentz force law. This analogy is incomplete, however,
since the purely spatial components of the curvature tensor do not in general
have an analog in the electromagnetic case; in fact, this is expected since linear
gravity is a spin-2 field in contrast to the spin-1 character of the electromagnetic
field.

Some of the main theoretical aspects of gravitomagnetism are discussed in
Section 2. We then turn our attention to how gravitomagnetism affects the
spacetime structure in general relativity. Of primary importance in this con-
nection is the gravitomagnetic clock effect, which in its simplest form may
be formulated in terms of the difference in the proper periods of two clocks
moving on the same circular orbit but in opposite directions about a rotat-
ing mass. Let τ+(τ−) be the period for prograde (retrograde) motion, then for
r � 2GM/c2, τ+ − τ− ≈ 4πJ/(Mc2). To lowest order, this remarkable result is
independent of Newton’s constant of gravitation G and the radius of the orbit
r. The effect and its consequences are discussed in Section 3 for circular equato-
rial orbits in the Kerr geometry and the intimate connection between the clock
effect and the gravitomagnetic gyroscope precession is demonstrated. The PPN
approximation for this effect is developed in Section 4 and a brief discussion of
its observability is given in Section 5. The sign of the clock effect is quite in-
triguing, as it implies that prograde equatorial clocks are slower than retrograde
equatorial clocks. This is completely opposite to what would be expected on the
basis of “inertial dragging”. In fact, gravitomagnetism is historically connected
with the question of the origin of inertia as this was Thirring’s motivation in
his original paper on gravitomagnetism [4]. The present status of the problem of
inertia is the subject of Section 6. Finally, Section 7 contains a brief discussion.

Unless specified otherwise, we use units such that G = c = 1 for the sake of
convenience.

2 Gravitoelectromagnetism

This section is devoted to a brief discussion of certain essential theoretical aspects
of gravitoelectromagnetism. The Larmor theorem has played an important role
in the field of magnetism; therefore, we begin by an account of the gravitational
analog of Larmor’s theorem.
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2.1 Gravitational Larmor Theorem

A century ago, Larmor established a theorem regarding the local equivalence
of magnetism and rotation [8]. That is, the basic electromagnetic force on a
slowly moving particle of charge q and mass m can be locally replaced in the
linear approximation by the inertial forces that arise if the motion is referred
instead to an accelerated system in the absence of the electromagnetic field.
The translational acceleration of the system is related to the electric field, aL =
−(q/m)E, and the rotational (Larmor) frequency is related to the magnetic
field via ωL = qB/(2mc). The charge-to-mass ratio is not the same for all
particles; otherwise, a geometric theory of electrodynamics could be developed
along the same lines as general relativity. It turns out that in general relativity
one can provide an interpretation of Einstein’s heuristic principle of equivalence
via the gravitational Larmor theorem [9]. This is due to the experimentally well-
established circumstance that the gravitational charge-to-mass ratio is the same
for all particles. Einstein’s heuristic principle of equivalence is usually stated
in terms of the gravitoelectric field, i.e. the translational acceleration of the
“Einstein elevator” in Minkowski spacetime. The gravitational Larmor theorem
would also involve the gravitomagnetic field, i.e. a rotation of the elevator as
well.

It follows from the theoretical study of the motion of test particles as well
as ideal test gyroscopes in a gravitational field that in general relativity the
gravitoelectric charge is qE = −m, while the gravitomagnetic charge is qB =
−2m; in fact, qB/qE = 2 since general relativity involves the tensor potential
gµν , i.e. (linear) gravitation is a spin-2 field. Thus aL = E and ωL = −B/c in
this case. Indeed B/c = ΩP is the gravitomagnetic precession frequency of an
ideal test gyroscope at rest in a gravitomagnetic field, i.e. far from a rotating
source dS/dt = ΩP × S, where

ΩP =
GJ

c2r3
[3(r̂ · Ĵ)r̂− Ĵ], (1)

and J is the total angular momentum of the source. Let us note that a gyro spin
is in effect a gravitomagnetic dipole moment that precesses in a gravitomagnetic
field. Locally, the same rotation would be observed in the absence of the gravit-
omagnetic field but in a frame rotating with frequency ωL = −ΩP in agreement
with the gravitational Larmor theorem.

It is the goal of the GP-B to measure the gravitomagnetic gyroscope preces-
sion in a polar orbit about the Earth and thereby provide direct observational
proof of the existence of the gravitomagnetic field [10].

2.2 Gravitoelectromagnetic Field

Let us consider the gravitational field of a “nonrelativistic” rotating astronomical
source in the linear approximation of general relativity. The spacetime metric
may be expressed as gµν = ηµν + hµν , where ηµν is the Minkowski metric. We
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define h̄µν = hµν − 1
2ηµνh, where h = tr(hµν); then, the gravitational field

equations are given by

�h̄µν = −16πG
c4

Tµν , (2)

where the Lorentz gauge condition h̄µν ,ν = 0 has been imposed. We focus atten-
tion on the particular retarded solution of the field equations given by

h̄µν =
4G
c4

∫
Tµν(ct− |x− x′|, x′)

|x− x′| d3x′, (3)

where the nature and distribution of the “nonrelativistic” source must be taken
into account.

We are interested in sources such that h̄00 = 4Φ/c2, h̄0i = −2Ai/c
2 and

h̄ij = O(c−4), where Φ(t,x) is the gravitoelectric potential, A(t,x) is the grav-
itomagnetic vector potential and we neglect all terms of order c−4 and lower
including the tensor potential h̄ij(t,x). It follows that T 00/c2 = ρ is the effective
gravitational charge density and T 0i/c = ji is the corresponding current. Thus,
far from the source

Φ ∼ GM

r
, A ∼ G

c

J× r
r3

, (4)

where M and J are the total mass and angular momentum of the source, respec-
tively. It follows from the Lorentz gauge condition that

1
c

∂Φ

∂t
+ ∇ ·

(
1
2
A
)

= 0, (5)

since the other three equations (h̄iµ,µ= 0) all involve terms that are of O(c−4)
and therefore neglected. The spacetime metric involving the gravitoelectromag-
netic (“GEM”) potentials is then given by

−ds2 = −c2
(
1− 2

c2
Φ

)
dt2 − 4

c
(A · dx)dt+

(
1 +

2
c2

Φ

)
δijdx

idxj . (6)

The GEM fields are defined by

E = −∇Φ− 1
c

∂

∂t

(
1
2
A
)
, B = ∇×A, (7)

in close analogy with electrodynamics. It follows from the field equations (2) and
the gauge condition (5) that

∇ ·E = 4πGρ, (8)

∇ ·
(
1
2
B
)

= 0, (9)

∇×E = −1
c

∂

∂t

(
1
2
B
)
, (10)

∇×
(
1
2
B
)

=
1
c

∂

∂t
E+

4π
c
G j , (11)
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which are the Maxwell equations for the GEM field. Using classical electrody-
namics as a guide, one can investigate the various implications of these equations
[11]. A thorough approach to the determination of the gravitomagnetic field of a
rotating mass (such as the Earth) is contained in the papers of Teyssandier [12].

The fact that the magnetic parts of equations (8) - (11) always appear with a
factor of 1/2 as compared to standard electrodynamics is due to the circumstance
that the effective gravitomagnetic charge is twice the gravitoelectric charge. That
is, QE = M and QB = 2M are the effective gravitoelectric and gravitomagnetic
charges of the source.

The linear approximation of general relativity involves a spin-2 field. This
field, once its spatial components are neglected, can be interpreted in terms of
a gravitoelectromagnetic vector potential. To sustain the electromagnetic anal-
ogy, however, we need to require that the gravitomagnetic charge be twice the
gravitoelectric charge. This factor of 2 is a remnant of the spin-2 character of
the original field, while for a pure spin-1 field (i.e. the electromagnetic field) the
ratio of the magnetic charge to the electric charge is unity.

The equation of motion of a test particle of mass m in this linear gravitational
field can be obtained from the variational principle δ

∫ Ldt = 0, where L =
−mcds/dt is given by

L = −mc2
[
1− v2

c2
− 2

c2

(
1 +

v2

c2

)
Φ+

4
c3
v ·A

]1/2
, (12)

using equation (6). To linear order in Φ and A, one can write (12) as

L = −mc2
(
1− v2

c2

)1/2

+mγ

(
1 +

v2

c2

)
Φ− 2m

c
γv ·A. (13)

Let us note that the deviation of equation (13) from a free-particle Lagrangian
is given to lowest order in v/c by mΦ − 2mA · v/c. This deviation would be
of the form jµA

µ in electrodynamics; therefore, the slow motion of the test
particle is very similar to that of a charged particle in electrodynamics except
that here qE = −m and qB = −2m as expected. It thus follows from the geodesic
motion of a test particle of mass m far from the source in this gravitational
background that the canonical momentum of the particle is given approximately
by p + (−2m/c)A, where p is the kinetic momentum. In this electrodynamic
analogy, the attractive nature of gravity is reflected in our convention of positive
gravitational charges for the source and negative gravitational charges for the test
particle. The gravitomagnetic charge is always twice the gravitoelectric charge as
a consequence of the tensorial character of the gravitational potentials in general
relativity.

The gauge transformations

Φ→ Φ− 1
c

∂ψ

∂t
, A→ A+ 2∇ψ, (14)

leave the GEM fields (7) and hence the GEM equations (8)-(11) invariant. The
Lorentz gauge condition (5) is also satisfied provided �ψ = 0. However, the
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quantity −qEΦ+ qBA · v/c in the Lagrangian is not invariant under the gauge
transformation (14). The gauge invariance of this Lagrangian is restored, how-
ever, if the gauge function ψ is independent of time, ∂ψ/∂t = 0. In this case, we
can start from a coordinate transformation t → t − 4ψ(x)/c3 in the metric (6)
resulting in the gauge transformations (14) with Φ left invariant.

The gravitational field corresponding to the metric (6) is given by the Rie-
mann curvature tensor

Rµνρσ =
1
2
(hµσ, νρ + hνρ, µσ − hνσ, µρ − hµρ,νσ), (15)

where h00 = 2Φ/c2 and hij = (2Φ/c2)δij are gravitoelectric and of O(c−2),
while h0i = −2Ai/c

2 is gravitomagnetic and of O(c−3). The components of the
curvature tensor as measured by the standard geodesic observers are given by
Rµνρσλ

µ
(α)λ

ν
(β)λ

ρ
(γ)λ

σ
(δ), where λµ(α) is the tetrad frame of the test observer. In the

linear approximation under consideration here, λµ(α) is in effect equal to δµα in
the calculation of the measured curvature. The components of this tensor may
be expressed in the form of a symmetric 6× 6 matrix R = (RAB), where A and
B range over (01, 02, 03, 23, 31, 12); hence,

R =
( E B
BT S

)
, (16)

where E and S are symmetric 3×3 matrices and B is traceless. We find that the
electric and magnetic components of the curvature are given by

Eij = 1
c2

Ej,i +O(c−4), (17)

Bij = − 1
c2

Bj,i +
1
c3

εijk
∂Ek

∂t
+O(c−4), (18)

and the spatial components are given by

Sij = − 1
c2

Ej,i +
1
c2

(∇ ·E)δij +O(c−4). (19)

That B is traceless is consistent with equation (9) and the fact that E and
S are symmetric is consistent with equation (10) at O(c−4). It is therefore clear
that gravitoelectromagnetism permeates every aspect of general relativity: the
gravitational potentials (GEM potentials), the connection (GEM field) and the
curvature. In the exterior of the rotating source, the spacetime is Ricci-flat and
hence S = −E , E is traceless and B is symmetric. These restrictions on the
curvature are consistent with the GEM field equations (8)-(11) in the source-
free region.

The general treatment of gravitoelectromagnetism presented here has been
based on a certain approximate form of the linear gravitation theory and can
be used in the theoretical description of many interesting gravitational phenom-
ena. In particular, we use this formalism below to investigate the microphysical
implications of the gravitomagnetic precession of spin.



Gravitomagnetism and the Clock Effect 89

2.3 Free Fall Is Not Universal

The assumption that all free test particles fall in the same way in a gravitational
field is reflected in general relativity via the geodesic hypothesis. That is, the
worldline of a free test particle is an intrinsic property of the spacetime manifold
and is independent of the intrinsic aspects of the particle. In this way, general
relativity is a geometric theory of gravitation. This circumstance originates from
the well-tested equality of inertial and gravitational masses.

An important consequence of Einstein’s geometric theory of gravitation is
the fact that an ideal test gyroscope would precess in the gravitomagnetic field
of a rotating source. Here we pose the question of whether all spins should
“precess” like a gyroscope; evidently, the treatment of intrinsic spin would go
beyond classical general relativity. It follows from the consideration of spin-
rotation-gravity coupling that the intrinsic spin of a particle (e.g. a nucleus)
would couple to the gravitomagnetic field of a rotating source (such as the Earth)
via the interaction Hamiltonian

H = σ ·ΩP (20)

such that the Heisenberg equations of motion for the spin would be formally
the same as that of an ideal test gyro [13]. Intuitively, this interaction is due
to the coupling of the gravitomagnetic dipole moment of the particle with the
gravitomagnetic field just as would be expected from the electromagnetic anal-
ogy. It follows from equation (20) that the particle is subject to a gravitational
Stern-Gerlach force given by

F = −∇(σ ·ΩP ) (21)

that is purely dependent upon its spin and not its mass and therefore violates
the universality of free fall.

The point is that a particle is in general endowed with mass and spin in addi-
tion to other intrinsic properties; indeed, the irreducible unitary representations
of the inhomogeneous Lorentz group are characterized by mass and spin. In its
interaction with a gravitational field, the mass interacts primarily with the grav-
itoelectric field while the spin interacts primarily with the gravitomagnetic field.
Whereas the former dominant interaction is consistent with the universality of
free fall, the latter is not. For instance, the bending of light by the gravitational
field of a rotating source depends on the state of polarization of the radiation.
The differential deflection of polarized radiation by the Sun is too small to be
measurable at present. The predicted violation is also extremely small for a nu-
cleus in a laboratory on the Earth: the weight of the particle is w = mg⊕(1± ε),
depending on whether the spin is polarized vertically up or down and ε ∼ 10−29.
Thus the predicted violation of the universality of free fall is extremely small.

It may still be possible to measure this relativistic quantum gravitational
effect by detecting the change in the energy of a particle in the laboratory when
its spin is flipped. This would require, for instance, significant refinements in
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modern variations of NMR and optical pumping techniques, since

�ΩP ∼ �GJ

c2R3 =
cJ

R

(
LP

R

)2

∼ 10−28eV (22)

is a factor of 104 below the sensitivity of recent experiments [14]. Here LP is the
Planck length, L2

P = �G/c3, J is the angular momentum of the Earth and R is
its average radius. The smallest detected energy shift is about 10−24eV corre-
sponding to a frequency shift of 2 nHz [14]. However, it appears that significantly
lower energy shifts may soon be detectable [15].

To clarify the nature of the force (21), let us consider the motion of a classical
spinning test body in a stationary gravitational field. Such a system is necessarily
extended and thus couples to spacetime curvature resulting in a Mathisson-
Papapetrou force

Fα =
c

2
Rαβµνu

βSµν = cRαµβνu
βSµν , (23)

where Sµν is the spin tensor of the system, uµ is the velocity vector such that
Sµνuν = 0 and the spin vector is given by

Sµ =
1
2
(−g)1/2εµνρσuνSρσ. (24)

For the calculation of Fα, it suffices to set, in the linear approximation, uα ≈
(1, 0, 0, 0), S0i ≈ 0 and Sij ≈ −εijkSk. Then, F0 ≈ 0 and

Fi ≈ cBijSj = −1
c
Bj,iS

j = −(ΩP )j,iSj , (25)

in agreement with equation (21). Thus the existence of the force (21) may be
ascribed to the intrinsic nonlocality of a particle in the quantum theory and
hence the coupling of spin to the magnetic part of the spacetime curvature in a
stationary field.

It is important to remark here that our considerations are distinct from pro-
posals to measure the classical spin-spin force as discussed in [11]. Our results ul-
timately follow from detailed considerations of Dirac-type wave equations in the
gravitational field of a rotating mass (see the references cited in [13]); however,
one can arrive at equations (20)-(21) on the basis of certain general arguments
such as the local isotropy of space, the extended hypothesis of locality and the
gravitational Larmor theorem [13].

Assuming the approximate validity of equations (20)-(21), it would be diffi-
cult to imagine a basic gravitational theory founded purely on the universality of
free fall and Riemannian geometry. However, such a theoretical structure would
clearly be an excellent effective theory in the macrophysical domain.

2.4 GEM Stress-Energy Tensor

Let us imagine a congruence of geodesic test particles in a gravitational field.
Taking one of the test particles as the reference observer, how does the motion of
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the other neighboring test particles appear to the fiducial observer? The result
is best expressed in a Fermi coordinate system that is set up along the refer-
ence worldline. Let Xµ = (τ,X) be the Fermi coordinates of the test particles,
while the reference observer is at the origin of spatial Fermi coordinates. Then
the equation of motion of the test particles is given by the generalized Jacobi
equation

d2Xi

dτ2
+ FR0i0jX

j + 2 FRikj0V
kXj + (2 FR0kj0V

iV k

+
2
3

FRikjlV
kV l +

2
3

FR0kjlV
iV kV l)Xj = 0, (26)

which is valid to first order in the relative separation X and to all orders in the
relative velocity V = dX/dτ . Here FRαβγδ(τ) are components of the curvature
tensor as measured by the fiducial observer, i.e. they are the projections of the
Riemann tensor onto the nonrotating tetrad frame of the reference observer.
Neglecting the second and third order terms in the relative rate of separation,
equation (26) can be written as the GEM analog of the Lorentz force law

m
d2X
dτ2

= qEE+ qBV ×B, (27)

where qE = −m, qB = −2m and

Ei = FR0i0j(τ)Xj , Bi = −1
2
εijk

FRjk0l(τ)X l. (28)

It is important to notice that the spacetime interval in the neighborhood
of the reference worldline can be expressed in Fermi coordinates as −ds2 =
Fgµν dXµdXν , where

Fg00 = −1− FR0i0j(τ)XiXj + · · · , (29)

Fg0i = −2
3

FR0jik(τ)XjXk + · · · , (30)

Fgij = δij − 1
3

FRikjl(τ)XkX l + · · · . (31)

Letting Fg00 = −1 + 2Φ and Fg0i = −2Ai, we find that

Φ = −1
2

FR0i0jX
iXj , Ai =

1
3

FR0jikX
jXk, (32)

so that the corresponding GEM fields using equation (7) agree with the results
in equation (28) to linear order in the separation X. One can verify directly that
∇ ·B = 0 and ∇ × E = 0, so that the source-free pair of Maxwell’s equations
are satisfied along the reference worldline. Moreover, it is possible to combine
the GEM fields together to form a GEM Faraday tensor Fαβ ,

Fαβ = − FRαβ0lX
l, (33)
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such that F0i = −Ei and Fij = εijkBk as in standard electrodynamics. Then the
other pair of Maxwell’s equations is given by Fαβ ,β = 4πJα, where Jα(τ,X) is
easily obtained to linear order inX using equation (33). Jα is a conserved current
such that Jα(τ,0) = − FRα0/4π along the fiducial trajectory. This treatment
should be compared and contrasted with the linear approximation developed
above, in particular, the GEM current is different here.

It is now possible to develop the classical field theory of the GEM field in the
Fermi frame; in particular, one can define the Maxwell stress-energy tensor and
the corresponding angular momentum for the GEM field. Thus

T αβ(τ,X) =
1
4π

(
Fα

γF
βγ − 1

4
ηαβFγδF

γδ

)
(34)

is the Maxwell stress-energy tensor for the GEM field that is quadratic in the
spatial separation and vanishes at the location of the fiducial observer. Physi-
cal measurements do not occur at a point, as already emphasized by Bohr and
Rosenfeld [16]; moreover, the fiducial observer is arbitrary here. Therefore, a
physically more meaningful quantity is obtained by averaging equation (34) over
a sphere of radius εL in the Fermi system. Here L is a constant invariant length-
scale associated with the gravitational field. We find that

< Tαβ(τ,X) > = ε2C0L
2T̃µνρσλ

µ
(α)λ

ν
(β)λ

ρ
(0)λ

σ
(0), (35)

where C0 is a constant numerical factor and

T̃µνρσ =
1
2
(
RµξρζR

ξ ζ
ν σ +RµξσζR

ξ ζ
ν ρ

)− 1
4
gµνRαβργR

αβ γ
σ . (36)

For a Ricci-flat spacetime, T̃µνρσ reduces to the Bel-Robinson tensor Tµνρσ;
in this case, Rαβγδ reduces to the Weyl tensor Cαβγδ and in equation (36)
CαβργC

αβ γ
σ = (K/4)gρσ with K = CαβγδC

αβγδ.
The magnitude of C0 depends on whether we average over the surface or the

volume of the sphere; in any case, one can always absorb C0 into the definition
of L. Thus the pseudo-local GEM stress-energy tensor may be defined for any
observer with the tetrad frame λµ(α) as

T(α)(β) = L2T̃µνρσλ
µ
(α)λ

ν
(β)λ

ρ
(0)λ

σ
(0). (37)

In this way, the pseudo-local GEM energy density, Poynting flux and stresses
are defined up to a common multiplicative factor.

It is important to note that the spatial components of the curvature have
been ignored in our construction of the GEM tensor T(α)(β). For a Ricci-flat
spacetime, however, the spatial components of the curvature are simply related
to its electric components; therefore, the pseudo-local tensor defined via equation
(37) using the Bel-Robinson tensor contains the full (Weyl) curvature tensor and
is thus the gravitational stress-energy tensor.

It follows from a simple application of these results to the field of a rotating
mass that there exists a steady Poynting flux of gravitational energy in the
exterior field of a rotating mass.
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2.5 Oscillations of a Charged Rotating Black Hole

Imagine a black hole of mass M , charge Q and angular momentum J that is
perturbed by external radiation. The black hole is stationary and axisymmetric;
therefore, the perturbation is expressible in terms of eigenmodes P(r, θ) exp(−iωt
+imjφ), where P depends upon the frequency of the radiation, the total angular
momentum parameters of the eigenmode (j,mj) and the spin of the external
field. It turns out that for a Fourier sum of such eigenmodes, the response of
the black hole far away and at late times is dominated by a superposition of
certain damped oscillations of the form A exp(−iωt), where ω = ωBH−iΓBH with
ΓBH ≥ 0. For these quasinormal modes, the amplitude A depends, among other
things, on the strength of the perturbation while ω depends only on the black
hole parameters (M,Q, J). Moreover, these black hole oscillations are in general
denumerably infinite and are numbered as n = 0, 1, 2, · · · , such that n = 0 is
least damped and ΓBH increases with n. The intrinsic ringing of a black hole
is due to the fact that once perturbed, the black hole undergoes characteristic
damped oscillations in order to return to a stationary state.

The fundamental modes of oscillations of black holes were originally found
by numerical experiments and initial attempts to explain the numerical results
via the properties of black hole effective potentials were unsuccessful [17]. The
solution of the problem was first given around 1980 [18]. This work provided
the stimulus for many subsequent investigations by a number of authors [19]. A
detailed discussion of black hole oscillations is contained in [20].

For the modes of oscillation of a charged rotating black hole, the only reliable
results are for j ≥ |mj | � 1. Expressions for (ωBH, ΓBH) have been obtained in
the case of j = |mj | � 1 for a general Kerr-Newman black hole; however, the
results have been generalized to the case of j > |mj | � 1 only for a slowly
rotating charged black hole [21]. To express (ωBH, ΓBH) in terms of (M,J,Q) in
the latter case, let ωK(r) = (Mr−3 − Q2r−4)1/2 be the “Keplerian” frequency
for the motion of a neutral particle in a circular geodesic orbit of radius r about
a Reissner-Nordström black hole of mass M and charge Q. Here we use Boyer-
Lindquist type of coordinates for the Kerr-Newman geometry. Timelike circular
geodesic orbits exist down to a null orbit of radius rN such that 2rN = 3M +
(9M2 − 8Q2)1/2. Let ωN = ωK(rN ), then it can be shown that for a slowly
rotating black hole

ωBH ≈ ±jωN +mjΩN , (38)

where
ΩN =

J

r3N

(
1− Q2

MrN

)
rN +M

rN −M
, (39)

is an effective black hole rotation frequency. The (2j+1)-fold degeneracy in the
spectrum of oscillations of the spherical black hole is removed by its rotation.
We note that ΩN is proportional to the gravitomagnetic precession frequency at
rN . Moreover,

ΓBH ≈
(
n+

1
2

)(
2− 3

M

rN

)1/2(
ωN ∓ mj

j
Q∗ΩN

)
, (40)
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where n = 0, 1, 2, · · · is the mode number and Q∗ = 6MQ2/[rN (9M2− 8Q2)]. It
is interesting to note that if the black hole is charged, the rotation removes the
degeneracy of the damping factor as well. Moreover, in the formulas (38) and
(40) if (ωBH, ΓBH) is a ringing mode, then so is (−ωBH, ΓBH). These results are
independent of the spin of the perturbing field, since they are valid for states of
high total angular momentum j ≥ |mj | � 1.

3 Structure of Time and Relativistic Precession

Let us now return to the gravitomagnetic temporal structure around a rotating
source. The gravitomagnetic clock effect involves a coupling between the orbital
motion of clocks and the rotation of the source. On the other hand, the gravito-
magnetic gyroscope precession occurs even for a gyroscope at rest in the exterior
field of a rotating source. Nevertheless, there is a general physical connection be-
tween relativistic precession and temporal structure. This is not surprising since
the operational definition of time ultimately involves counting a definite period
and simple precession is uniform periodic motion. It is the purpose of this section
to explain this relationship. We do this in several steps in the context of Kerr
geometry with

−ds2 = −dt2 + Σ

∆
dr2 +Σ dθ2 + (r2 + a2) sin2 θ dφ2

+
Rgr

Σ
(c dt− a sin2 θ dφ)2, (41)

where Σ = r2 + a2 cos2 θ and ∆ = r2 − Rgr + a2. Here Rg = 2GM/c2 is
the gravitational radius of the source and the Kerr parameter a = J/Mc is a
lengthscale characteristic of the rotation of the source. For M = 0 and a �= 0,
the spacetime given by (41) is flat as expected. For a = 0 and M �= 0, the metric
(41) represents the Schwarzschild geometry. Finally, for a = 0 and M = 0 we
have the metric of an inertial frame expressed in spherical coordinates (r, θ, φ).

Let us first imagine an accelerated observer in an inertial frame. Suppose that
this observer carries along its worldline an ideal pointlike test gyroscope so that
there is no net torque on the gyroscope and its spin axis is therefore nonrotating.
To simplify matters, let us first assume that the path is a circle of radius r in
the (x, y)-plane with its center at the origin of coordinates. According to the
standard static observers in the inertial frame, the accelerated observer moves
with uniform frequency ω∗ẑ. The transformation between the inertial frame and
the rest frame of the rotating observer involves a simple rotation of frequency ω∗;
therefore, from the viewpoint of the standard (i.e. static) observers in the rotating
frame a natural operational way to keep the direction of the gyroscope spin
axis nonrotating is to imagine fixing this axis at some initial time with respect
to the axes of the rotating frame, but then continuously rotating it backward
with frequency ω∗. In this way, the spin direction would remain fixed in the
inertial frame if the rotation of the observer were virtual. In reality, however, the
observer’s proper time τ is related to t by dτ = dt (1−v2/c2)1/2, where v = rω∗;
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hence, the backward rotation of the spin occurs with respect to the rotating
observer’s proper time, i.e. with frequency ω∗(dt/dτ). From the standpoint of
the standard inertial observers, the time dilation causes the spin direction to
overcompensate and hence the spin direction is not fixed but precesses with
the Thomas precession frequency ωT = −ω∗(dt/dτ) + ω∗. This amounts to a
precession of frequency ω∗(γ−1) in a sense that is opposite to that of the rotation
of the comoving observer; moreover, the generalization to arbitrary acceleration
can be simply carried out by means of the Frenet procedure. That is, a Frenet
frame can be set up along the path of the observer in space; then, ω∗ = v/R(t),
where R(t) is the radius of the curvature at each instant of time t.

The intimate connection between time dilation and Thomas precession in
Minkowski spacetime can be extended to a gravitational field. Therefore, let us
imagine next that the motion described above is the geodesic motion of a free
test particle carrying an ideal test gyroscope around a spherical mass M . Let
ωK = dφ/dt be the Keplerian frequency as perceived by static inertial observers
at infinity; then, ω2

K = GM/r3, where r is the Schwarzschild radius of the circular
orbit. The proper frequency in this case is ω = ΓωK, where Γ = dt/dτ = (1 −
3GM/c2r)−1/2. The gravitational time dilation involves the static “gravitational
redshift” effect of −g00 = 1 − 2GM/c2r in the Schwarzschild geometry as well
as the azimuthal motion r2(dφ/dt)2 = GM/r resulting in the factor of 3 in
Γ . This situation is reminiscent of the spin-orbit coupling in the motion of the
electron around the nucleus in the hydrogen atom; however, there are subtle
differences between the electromagnetic and gravitational cases. In this case, the
spin precession frequency is given by the Fokker frequency ωF = ω−ωK, and the
sense of precession is in the same sense as the orbital motion. This gravitational
analog of the Thomas precession has a simple and transparent explanation in
terms of Einstein’s principle of equivalence. According to this heuristic principle,
an observer O in a gravitational field is locally equivalent to an observer O′
in Minkowski spacetime with an acceleration that is equal in magnitude but
opposite in direction to the Newtonian gravitational “acceleration” of O. The
gravitational (Fokker) precession is thus locally equivalent to Thomas precession
with the direction of acceleration reversed. It follows that the Fokker precession is
in the same sense as the orbital motion. For an arbitrary accelerated observer in a
gravitational field with velocity uµ = dxµ/dτ and acceleration aµ = Duµ/dτ , the
nonrotating equation of motion for the torque-free pointlike spin vector (uµSµ =
0) is

dSµ

dτ
+ Γµ

αβ uαSβ = uµaνS
ν , (42)

so that both Fokker and Thomas precessions would be present for accelerated
motion in Schwarzschild geometry.

The gravitomagnetic precession of a gyroscope is in a similar way related to
the temporal structure brought about by the rotation of the source. However,
the situation here is more complicated than the gravitoelectric Fokker precession
since the temporal structure is affected by the coupling of orbital motion with
the angular momentum of the source.
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Specifically, let us imagine stable circular geodesic orbits in the equatorial
plane of the Kerr source (41). It can be shown that

dt

dφ
=

a

c
± 1

2π
TK ,

dτ

dφ
= ± 1

2π
TK (1± 2α− 3Rg/2r)1/2 , (43)

where TK = 2π/ωK is the Keplerian period of the orbit and α = a ωK/c. Here
the upper (lower) sign refers to a prograde (retrograde) orbit. It follows that the
orbital period is given by

t± = TK (1± α) , τ± = TK (1± 2α− 3Rg/2r)1/2 . (44)

Let us first note that t+ − t− = 4πa/c and τ2+ − τ2− = 4αT 2
K. Since τ+ + τ− =

2TK + O(c−2), we find that τ+ − τ− ≈ 4πa/c. In fact, τ+ − τ− monotonically
decreases as a function of r and approaches 4πa/c as r → ∞. Thus a prograde
clock moves more slowly than a retrograde clock according to comoving observers
as well as the standard asymptotically inertial observers at infinity; moreover,
τ+ − τ− ≈ 4πa/c for r � Rg. This remarkable gravitomagnetic clock effect has
been discussed in some detail in recent publications [22]-[27]. This classical effect
is in some sense the gravitomagnetic analog of the topological Aharonov-Bohm
effect; in fact, let us note that far from a finite rotating source τ+−τ− is nearly a
constant independent of the “distance” r and the gravitational coupling constant
G. These aspects of the clock effect have been discussed in detail elsewhere [26].

Let us now imagine two clocks moving in opposite directions on a stable
circular geodesic orbit of radius r in the equatorial plane of the Kerr source.
Suppose that at t0 = 0, they are both at φ0 = 0; let us denote the event at
which the clocks next meet again by (t1, φ1). It follows from equation (43) that
2πt1 = φ1TK(1 + α) for the prograde clock and 2πt1 = (2π − φ1)TK(1 − α) for
the retrograde clock. Thus φ1 = π(1 − α) and t1 = TK(1 − α2)/2. Moreover,
τ2+(φ1) − τ2−(φ1) = αT 2

K(α
2 + 3Rg/2r), which is negligibly small for clocks in

orbit about astronomical sources in the solar system; in fact, τ+(φ1)− τ−(φ1) ∼
O(c−4). The next time the clocks meet is at (t2, φ2), which bears the same
relationship to (t1, φ1) as (t1, φ1) to (t0, φ0); therefore, φ2 = 2π(1 − α) and
t2 = TK(1 − α2). In general, the nth time the clocks meet is at (tn, φn) with
φn = nπ(1− α) modulo 2π and tn = nTK(1− α2)/2.

Consider now the behavior of the diametrical line joining these events to the
origin of the spatial coordinates. For a = 0, i.e. in the Schwarzschild case, this
line is fixed as the clocks repeatedly meet at two diametrically opposite points.
However, for a �= 0 the line precesses in the opposite sense as the rotation of the
source with the precession frequency given approximately by (cf. Fig. 1)

π − φ1
τ+(φ1)

=
GJ

c2r3
+O(c−4), (45)

which at this order is in agreement with the precession frequency of an ideal
torque-free gyroscope that is fixed in the equatorial plane of the Kerr source
[28].
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φ 0

φ 1

φ 2

Ω p

Fig. 1. Gravitomagnetic precession of the diametrical lines indicating the points
(φ0, φ1, φ2, . . . ) at which the clocks would meet.

Our treatment of the clock effect has been limited thus far to circular orbits
in the equatorial plane of the source. Off this plane, even circular orbits are
not generally closed and the discussion of the clock effect as well as its intimate
connection with the gravitomagnetic gyroscope precession becomes more com-
plicated. In fact, the clock effect can be extended to such orbits using the notion
of azimuthal closure [26].

Finally, it should be mentioned that the general motion of an ideal pointlike
torque-free gyroscope in the Kerr field would, in accordance with equation (42),
involve Thomas and Fokker precessions as well as a complicated gravitomag-
netic motion that consists of both precession and nutation. Indeed, the notion of
relativistic nutation has been introduced in the post-Schwarzschild approxima-
tion scheme in order to describe the nutational part of the gravitomagnetic spin
motion [29]. The complex gravitomagnetic spin motion reduces to the simple
(Schiff) precession in the lowest post-Newtonian order.

4 Clock Effect in the PPN Approximation

In view of the possibility of detecting the gravitomagnetic clock effect via space-
borne clocks, it is interesting to develop the theory of the clock effect within the
parametrized post-Newtonian (PPN) framework. The PPN formalism contains
a set of parameters that characterize different metric theories of gravitation in
the post-Newtonian approximation. The general form of the PPN metric is de-
scribed in [30,31]; it includes theories and effects that are not of primary interest
for our treatment of the clock effect. Therefore we will start from a simplified
PPN metric of the form

g00 = −1 + 2U − 2βU2 , (46)

g0i = −1
4
(4γ + 4 + α1)H∗i , (47)

gij = (1 + 2γU)δij , (48)
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which describes a rotating body in an underlying Cartesian coordinate system
xµ = (ct,�) with � = (x, y, z). In the following, we will use spherical coordi-
nates (T, θ, φ); the isotropic radial coordinate T should not be confused with the
Schwarzschild radial coordinate r. In general relativity, the PPN parameters α1,
β and γ are given by α1 = 0 and β = γ = 1.

The PPN metric (46)-(48) is restricted to theories that exhibit conservation
laws for total momentum and ignores the Whitehead and preferred-frame effects
[32]. We assume that the gravitational source is a uniformly rotating and nearly
spherical body that is symmetric about the axis of rotation (i.e. the z-axis). We
are interested in the exterior gravitational field of the source when its center of
mass is at the origin of spatial coordinates. The gravitoelectric potential U(T, θ)
is given in this case by [12]

U(T, θ) =
GM

c2T

[
1 +

∞∑
n=2

Jn

(Te
T

)n
Pn(cos θ)

]
, (49)

where Te is the equatorial radius of the source, M is in effect the asymptotically
measured mass of the source, Pn is the Legendre polynomial of degree n and

Jn :=
1

MTne

∫
µ(T′, θ′)T′nPn(cos θ′) d3T′ . (50)

Here µ denotes the effective mass-energy density of the source. In a similar
way the multipole expansion of the gravitomagnetic vector potential H∗i can be
expressed as [12]

H∗i (T, θ) =
G(J × �)i

c3T3

[
1 +

∞∑
n=1

Kn

(Te
T

)n
P ′n+1(cos θ)

]
, (51)

where J = J ẑ is in effect the asymptotically measured angular momentum of
the source and P ′n(x) = dPn(x)/dx. Here

Kn :=
2

2n+ 3
MT2e
J

(Ln + Jn+2) (52)

and

Ln :=
1

MTn+2
e

∫
µ(T′, θ′)T′n+2

Pn(cos θ′)d3T′ . (53)

The derivation of the clock effect involves the computation of the proper time
τ over a complete azimuthal cycle along geodesic orbits about the source. For
simplicity, we limit our discussion to circular geodesic orbits in the equatorial
plane, i.e. T = constant and θ = π/2.

The radial geodesic equation, corresponding to a circular orbit in the equa-
torial plane, is given by

Γ 8
αβ

dxα

dτ

dxβ

dτ
= 0 , (54)
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which can be written as(c dt
dφ

)2
+2
(c dt
dφ

)Γ 8
0φ

Γ 8
00

+
Γ 8
φφ

Γ 8
00

= 0 . (55)

It is straightforward to show that Γ 8
0φ/Γ

8
00 = g0φ,8/g00,8 and Γ 8

φφ/Γ
8
00 =

gφφ,8/g00,8. Using equations (46)-(48), we find that

g0φ = −1
4

(
4γ + 4 + α1

)
H(T, θ) sin2 θ , (56)

where

H(T, θ) =
GJ

c3T

[
1 +

∞∑
n=1

Kn

(Te
T

)n
P ′n+1(cos θ)

]
, (57)

and gφφ = T2(1+ 2γU) sin2 θ. The solution of equation (55) can then be written
as

dt

dφ
= ±

∣∣∣c2
T
U,8

∣∣∣− 1
2
[
1 + (β + γ)U +

1
2
γTU,8

]
+

1
8c

(
4γ + 4 + α1

)H,8

U,8
+O(c−3) . (58)

It follows from the PPN metric −c2dτ2 = c2g00dt
2 + 2cg0φdtdφ+ gφφdφ

2 that(dτ
dφ

)2
= (1− 2U)

( dt

dφ

)2
− 1

c2
T2 +O(c−3) . (59)

Using equation (58), we find after some algebra that

dτ

dφ
= ±

∣∣∣c2
T
U,8

∣∣∣− 1
2
[
1 + (β + γ − 1)U +

1
2
T(γU,8 − |U,8|)

]
+

1
8c

(
4γ + 4 + α1

)H,8

U,8
+O(c−3) . (60)

Integration of this equation immediately yields τ±; hence,

τ+ − τ− =
π

2c

(
4γ + 4 + α1

)H,8

U,8
+O(c−3) (61)

gives the gravitomagnetic clock effect within the restricted PPN framework
adopted here. The explicit dependence of the gravitomagnetic clock effect on
the PPN parameters is through the proportionality factor of (4γ + 4 + α1); in
fact, the clock effect has this feature in common with other main gravitomagnetic
effects [32].

It is interesting to note that in general relativity the gravitomagnetic clock
effect in the post-Newtonian approximation is given by

τ+ − τ− ≈ 4π
J

Mc2

[
1 +

(3
2
J2 − 9

2
K2

)T2e
T2

]
, (62)
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when the source is assumed to be symmetric about the equatorial plane and all
moments higher than the quadrupole are neglected. Using data given in [12],
we find that for the Earth J2 ≈ −10−3 and K2 ≈ −10−3, so that (3/2)J2 −
(9/2)K2 ≈ 3 × 10−3 gives the relative contribution of the oblateness of the
Earth to the clock effect for a near-Earth equatorial orbit.

5 Detection of the Gravitomagnetic Temporal Structure

According to Eq. (43) and the discussion following it, the orbital motion of free
clocks around a rotating mass gives rise to the gravitomagnetic clock effect which
shows up in the difference between the proper orbital periods of co- and counter-
orbiting clocks. This is given by 4πa/c for equatorial trajectories. Inserting the
specific angular momentum of the Earth (a ∼ 3 m) yields an amazingly ”large”
value of τ+ − τ− ∼ 10−7s.

Despite this seemingly large effect, the actual measurement of this time dif-
ference encounters severe practical difficulties. Since the two clocks are assumed
to move along opposite but identical orbits, their Kepler periods exactly cancel
upon forming the difference τ+−τ−, thereby revealing the gravitomagnetic clock
effect. In reality, however, clocks cannot be injected into identical trajectories
and the resulting difference in the Kepler periods will readily exceed the time
difference induced by the rotation of the Earth. Since for near-Earth orbits a
radial separation of 0.1 mm of the clocks involves a time difference in the Kepler
periods of the same order of magnitude as the gravitomagnetic clock effect, the
position of the clocks has to be known at the submillimeter level in order to
filter the effect which is caused by the rotation of the Earth out of the data.
Similary, as the satellite moves just under 1 mm within 10−7s along its track (or
∼ 10−2 milliarcseconds in angular distance), the azimuthal position has to be
known at the same accuracy as the radial one. On the other hand, the gravito-
magnetic time difference accumulates with the number of revolutions and after
hundreds or thousands of periods a knowledge of the position of the clocks at
the centimeter level will be sufficient to overcome the difference in the Kepler
periods.

Another difficulty arises from the determination of all the forces that act on
the satellites carrying the clocks. Since the period of revolution for orbits of∼ 103

km altitude is of the order of ∼ 104 s, accelerations as weak as 10−12 m/s2 will
already cover the gravitomagnetic clock effect. Among these forces, gravitational
perturbations due to the nonsphericity of the Earth, solid and ocean Earth tides
as well as the interaction with the Sun, Moon and planets will cause the most
significant deviations from an ideal orbit. Depending on the altitude of the satel-
lites, the atmospheric drag effect can also considerably change the shape of the
orbit. Moreover, this latter effect is quite difficult to model because it strongly
depends on the atmospheric density which is not only correlated to the orbital
height but also subject to temporal variations. Other non-gravitational perturba-
tions like solar and terrestrial radiation pressure, thermal thrust, charged particle
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drag etc. must also be taken into account despite their less distinct influence,
since they likely induce accelerations in excess of 10−12 m/s2.

In practice, the effect of all these perturbations will be modeled by deter-
mining a precise orbit based on the actual spacecraft observations. This will be
accomplished by generating an orbital trajectory following Newton’s equations
of motion and by including all perturbing forces acting on the satellite, using
the most accurate models available. In the next step, this predicted orbit has to
be best fitted to the one observed, where some force parameters may be solved
for during the orbit adjustment process in order to obtain an improved or tai-
lored force model for the specific mission. From the resulting precise orbit the
effects of the individual perturbations are removed step by step thus yielding a
quasi-Keplerian orbit, but still carrying the signatures of the relativistic effects.
Finally, a comparison with the corresponding clock predictions for an appropri-
ate synthetic orbit is performed which is expected to confirm the clock effect
being investigated.

Therefore, in order to meet the very stringent conditions for the observation
of the clock effect, many tiny perturbing sources have to be considered and
investigated that are usually absent in most of the present orbit determination
systems.

6 Quantum Origin of Inertia

The sign of the gravitomagnetic clock effect has a remarkable consequence that
will be elucidated in this section. It follows from t+ > t− and τ+ > τ− that the
uniform motion of the prograde clock is slower than that of the retrograde clock.
Thus in comparison with motion around a nonrotating mass, a rotating mass
would “drag” free test particles along such that it would take longer (shorter)
to go once around it on an equatorial circular orbit in the prograde (retrograde)
direction. We may call this circumstance virtual “inertial antidragging,” since
it is the exact opposite of what would be expected on the basis of the so-called
“inertial dragging” [33]. In fact, as Fig. 2 clearly demonstrates, for a given r (i.e.
fixed orbital radius), the faster the Kerr source spins, the slower the prograde
motion and the faster the retrograde motion.

Rotational or translational inertial dragging refers to the circumstance that
an accelerating mass would somehow induce acceleration in the same sense in
nearby masses as a consequence of the so-called “Mach’s principle”. The clock
effect indicates that precisely the opposite situation is predicted for rotational
motion in the equatorial plane by the general theory of relativity. Translational
inertial dragging has been discussed by a number of authors [34]; again, such
notions are foreign to the standard geometric interpretation of general relativity
[35]. In general relativity, accelerated motion is absolute in the sense that it is
nonrelative. Thus the term “absolute” as employed here only signifies the oppo-
site of the term “relative” and is devoid of any metaphysical connotations. The
gravitomagnetic clock effect and the gyroscope precession indicate the absolute
rotation of the source. That is, a direct gravitomagnetic verification of Einstein’s
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Fig. 2. Plot of the clock rate versus the rotation of the source. Imagine an ensemble
of Kerr fields with the same mass but different angular momenta. For a fixed stable
circular geodesic orbit with “radius” r, τ+(τ−) monotonically increases (decreases) over
the ensemble with increasing angular momentum of the source. Stable orbits of this
type occur for r ≥ r±, where r± − 3Rg ± 4a (2Rg/r±)1/2 = 3a2/r±. Let us note that
r− ≥ r+ and the equality occurs for a = 0 and r± = 3Rg; moreover, r±/a → (3)1/2 as
2a/Rg → ∞. The graph illustrates the behavior of τ± for an ensemble of Kerr black
holes with 2a ≤ Rg; for 2a = Rg, r+ = a and r− = 9a. In the graph, τ0 = τ±(a = 0)
and the radius r is chosen to be 5Rg.

theory of gravitation—e.g. via NASA’s GP-B—would constitute observational
proof that the rotation of the Earth is absolute and not merely relative to the
distant matter of the universe [36].

Mach’s profound analysis of the foundations of Newtonian mechanics occa-
sioned a thorough re-examination of the basic classical notions of space, time and
motion that had been prevalent since Newton provided a rational basis for the
Copernican revolution and Kepler’s laws of planetary motion. This re-evaluation
culminated in Einstein’s theory of general relativity. It is therefore of great im-
portance to recognize that general relativity—which agrees with all experimental
data to date—does not contain the idea of relativity of arbitrary motion. That is,
this concept — which was so crucial in the historical development of Einstein’s
theory — is absent in the standard geometric interpretation of general relativity
in the sense that it is neither a part of the foundations of the theory nor follows
from it. The re-emergence of absolute motion may be taken to mean that gen-
eral relativity is still not completely devoid of certain “metaphysical” elements.
Should general relativity therefore be modified or abandoned in favor of a the-
ory based on the relativity of arbitrary motion? To do so would be unwise. One
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should recognize instead that physics has progressed far beyond the early days
of relativity theory and the observational successes of general relativity must
now be integrated within a quantum framework that involves the vacuum state
of microphysics as well as the rest frame of the cosmic microwave background
radiation.

Mach noted that in Newtonian mechanics, the intrinsic state of a classical
particle characterized by its mass m has no direct connection with the extrinsic
state of the particle characterized by its position and velocity (x,v) in absolute
space and time. Hence the same extrinsic state can be occupied by other masses
comoving with the particle. Thus an observer can change its perspective by
comoving with each particle in turn. In Newtonian mechanics, the particles are
thus “placed” on the absolute space and time continuum and remain external
to it. On the other hand, classical particles are “connected” to each other via
interactions such as gravity and electromagnetism. Mach therefore concluded
that only the motion of a particle relative to other particles should have ultimate
physical significance. Mach’s basic analysis has been restated in modern form in
[37].

In classical physics, motion takes place via classical particles as well as elec-
tromagnetic waves. It appears that Mach did not extend his analysis of classical
particle motion to electromagnetic wave propagation; in this connection, the is-
sues that arise in the examination of the historical record are briefly mentioned
in the Appendix. Let us therefore apply Mach’s argument to the motion of elec-
tromagnetic waves. The intrinsic aspects of the wave are its amplitude, period,
wavelength and polarization, which therefore characterize its intrinsic state. The
extrinsic state of the wave is given by its wave function Ψ(t,x) in absolute time
and space, and we note that the wave’s intrinsic state is directly related to its
extrinsic state, i.e. electric and magnetic field components, since the former can-
not be defined independently of the latter. The conclusion is that the motion of
classical electromagnetic waves is absolute, i.e. nonrelative.

Classical motion can be either relative or absolute. In Einstein’s discussion of
the so-called “Mach’s principle,” only “ponderable” masses are considered [33],
whereas classical motion occurs via classical particles as well as electromagnetic
waves. It is natural to think of the motion of classical particles (i.e. “ponderable”
masses) as relative, since one can change one’s perspective by moving with each
mass in turn. In the same sense, the motion of electromagnetic waves must be
considered absolute due to its observer-independent status. The development
of these simple notions taking due account of wave-particle duality leads to
the principle of complementarity of absolute and relative motion [38]. In this
connection, let us note that Mach’s analysis of classical particle motion may
be restated in terms of the complete kinematic independence of the absolute
position x of a particle from its momentum p = mv. In contrast, quantum
kinematics can be consistently formulated only by imposing the fundamental
quantum condition on the operators characterizing the position and momentum
of a particle in absolute space and time, i.e. [x̂j , p̂k] = i�δjk. For instance, in the
nonrelativistic motion of a free particle in the Heisenberg picture p̂ = mv̂ and
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[x̂j , v̂k] = i�m−1δjk. Thus in contrast to the situation in classical mechanics, the
mass of a particle is related to its position and velocity in quantum mechanics due
to the fact that the particle has wave characteristics as well. This idea naturally
extends to the specific orbital angular momentum of the particle, l̂i = εijkx̂j v̂k,
so that [l̂j , l̂k] = i�m−1εjkn l̂n. In the limit of an infinitely massive particle,
the connection disappears and the position and velocity commute; that is, one
recovers classical mechanics when the system is so massive that the perturbation
due to an act of observation on the system is negligible and the system therefore
behaves classically.

Mach’s argument involves classical quantities (c-numbers), whereas the quan-
tum condition involves operators (q-numbers); nevertheless, the quantum con-
dition implies that the intrinsic and extrinsic aspects of the particle are directly
related through Planck’s constant. For instance, in the Schrödinger picture the
extrinsic state of the particle is given by the wave function Ψ(t,x) and the
Schrödinger equation for Ψ involves m, which characterizes the intrinsic state
of the particle in Mach’s analysis. The relationship under discussion here is not
merely formal but can be verified observationally. In fact, this kinematic con-
nection is particularly well illustrated by the example of a free particle passing
through a slit. The resulting diffraction angle is inversely proportional to the
mass of the particle, so that the diffraction is absent in the limit of large mass
and the particle behaves classically. To the extent that classical mechanics can be
thought of as a limiting form of quantum mechanics, the epistemological prob-
lem of Newtonian mechanics — so clearly brought out by Mach — disappears.
That is, the problem of the origin of inertia is resolved through the wave nature
of matter.

Thus far the inertial mass of the particle has provided the quantum con-
nection to the inertial reference frames of Newtonian mechanics. The invariance
group of Minkowski spacetime is the Poincaré group whose irreducible unitary
representations can be described in terms of mass and spin. Thus in the rela-
tivistic theory the inertial properties of a particle are characterized by mass and
spin. The inertial properties of intrinsic spin have been discussed in [39].

Inertia has its origin in the fact that matter is intrinsically extended in space
and time and through this nonlocality inertial reference frames can be “rec-
ognized”; then, a physical system tends to preserve its state with respect to
such frames. This is beautifully illustrated by experiments involving macroscopic
quantum systems that have phase coherence, such as the recent demonstration
of Earth’s absolute rotation via superfluid He4 [40]. The quantum aspects of the
origin of inertia are further developed in [41].

7 Discussion

In this paper we have examined some of the main theoretical aspects of gravito-
magnetism in general relativity. The influence of the proper rotation of a source
on the spacetime structure can be studied in various ways. Attention has been fo-
cused here on certain features of the gravitomagnetic clock effect and its relation
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with the gravitomagnetic gyro precession. However, other approaches exist and
should be mentioned. The detection of the gravitomagnetic field of the Earth via
the Lense-Thirring precession of satellite orbits has been investigated by Ciu-
folini et al. [42]. Moreover, gravitomagnetic effects in the spacetime curvature can
be measured in principle using gravity gradiometry [43]. In this connection, it is
interesting to note that gravity gradiometers of high sensitivity that are based
on atomic interferometry are being developed for space applications [44,45].

Appendix: Mach and the Absolute Motion of Light

Newton’s introduction of the concepts of absolute space and time was truly
revolutionary in his day and allowed him to formulate the basic classical laws of
particle motion. Leibniz [46] and Berkeley [47] criticized the notions of absolute
space and absolute time and emphasized instead the idea of relativity of all
motion. Later, however, Maxwell [48] relied on absolute space and time for his
fundamental extension of the Newtonian ideas of motion to electromagnetic field
propagation. On the other hand, Mach revived the principle of relativity of
all motion on the basis of a profound analysis of the foundations of classical
mechanics [49]. Mach’s work played a significant role in Einstein’s development
of the theory of relativity [50].

Mach’s deep physical treatment of the relativity of classical particle motion
was motivated by his epistemological stance on the relativity of all measurement.
According to Mach, the result of a measurement is the establishment of a relation
and not of ”absolute” notions, since in Mach’s view the latter refer to processes
or objects that are not empirically verifiable in principle [51]. Mach’s analysis of
the relativity of particle motion in his great work on classical mechanics [49] was
not extended to electromagnetic wave motion in his later work on physical optics
[52]. In this book, Mach discussed the wave theory of light as well as the speed of
light; however, he apparently made no attempt to put these in the context of his
epistemological stance on the relativity of all motion. There is no evidence that
Mach ever wavered in his opposition to absolute motion [53]. However, a number
of Mach’s contemporaries pointed out the absolute character of the constancy of
the speed of light and were troubled by the fact that this aspect of the relativity
theory was in conflict with the relativity of all motion. Among the physicists
and philosophers who raised such doubts about the epistemological stance of
the theory of relativity one can mention Friedrich Adler, Hugo Dingler, Philipp
Frank, Anton Lampa and Joseph Petzoldt. Although it is claimed in the book
of Blackmore [53] that Mach rejected the principle of the constancy of the speed
of light because it was in contradiction to his phenomenalistic epistemology due
to its constant validity independent of all sensations and conscious data, there
is actually no evidence that Mach ever directly or indirectly commented on the
constancy of the speed of light [54]. A historical analysis of the situation and
the influence of these criticisms on Mach can be found in the monographs of
Blackmore [53] and Wolters [54].
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An exposition of the reasons for the supposed opposition to the theory of
relativity based on epistemological considerations and experimental facts was
promised to appear in a sequel to Mach’s book on optics [52] in collaboration
with his son Ludwig, but this was never published. Although the preface to the
”Optics” is generally regarded as the most obvious evidence of Mach’s reluctance
to accept the relativity theory, there is every reason to believe that it was written
by Ludwig only after the death of his father and expresses Ludwig’s opinion on
the theory of relativity, despite the fact that Ernst Mach is stated to be the
author of this preface. More on this conjecture can be found in [54].

Finally, the position of Mach vis-à-vis the theory of relativity is also discussed
in the paper of Thiele [55].
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Spinning Relativistic Particles in External Fields
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Abstract. The motion of spinning relativistic particles in external electromagnetic
and gravitational fields is considered. The noncovariant spin formalism is crucial for the
correct description of the influence of the spin on the particle trajectory. It is shown that
the true coordinate of a relativistic spinning particle is the naive, common coordinate
r. A simple derivation is presented for the gravitational interaction of first order in
spin, for a relativistic particle. The equations of motion obtained for a relativistic
spinning particle in an external gravitational field differ essentially from the Papapetrou
equations. Effects of higher order in spin are discussed, including the gravimagnetic
moment, a special spin effect in general relativity. We consider also the contributions of
the spin interactions of first and second order to the gravitational radiation of compact
binary stars.

1 Introduction

The problem of the motion of a particle with internal angular momentum (spin)
in an external field consists of two parts: the description of the spin precession
and accounting for the spin influence on the trajectory of motion. To lowest
nonvanishing order in c−2 the complete solution for the case of an external
electromagnetic field was given more than 70 years ago [1]. The gyroscope pre-
cession in a centrally symmetric gravitational field had been considered to the
same approximation even earlier [2]. Then, much later the spin precession was
investigated in the case of the gravitational spin–spin interaction [3]. The fully
relativistic problem of the spin precession in an external electromagnetic field
was also solved more than 70 years ago [4] and then, in a more convenient for-
malism, using the covariant vector of spin, in [5].

The situation with the second part of the problem, which refers to how the
spin influences the trajectory, is different. Covariant equations of motion for a
relativistic spinning particle in an electromagnetic field were written in the same
paper [4] and for the case of a gravitational field in [6]. These equations have
been discussed repeatedly from various points of view in numerous papers (see,
e.g., [7-18]). The problem of the influence of the spin on the trajectory of a
particle in external fields is not only of purely theoretical interest. In particular,
it attracts attention being related to the description of the motion of relativistic
particles in accelerators [19] (see also recent review [20]).

In fact, it is far from being obvious whether one can observe in practice the
discussed spin corrections to the equations of motion of elementary particles as,
for instance, an electron or proton. According to the well–known argument by
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Bohr (see [21]), an additional Lorentz force due to the finite size of the wave
packet of a charged particle and to the uncertainty relation exceeds the cor-
responding component of the Stern–Gerlach force. However, this argument by
itself does not exclude in principle the possibility to observe a common Stern–
Gerlach effect, even a small one, in the presence of a larger background due to
the uncertainty relation. In particular, in a recent paper [22] this possibility is
claimed to be supported by numerical calculations. Moreover, spin–dependent
correlations certainly exist in differential cross sections of scattering processes.
So, it was proposed long ago to separate charged particles of different polar-
izations through the spin interaction with external fields in a storage ring [23].
Though this proposal is being discussed rather actively (see review [20]), it is
not clear up to now whether it is feasible technically.

There are however macroscopic objects for which internal rotation certainly
influences their trajectories. We mean the motion of Kerr black holes in ex-
ternal gravitational fields. This problem is of importance in particular for the
calculation of the gravitational radiation of binary stars. In this connection it was
considered in [24-27]. However, when turning to these calculations, we found [28]
that the equations of motion taking account of spin to the lowest nonvanishing
order in c−2, used in these papers, lead to results which differ from the well–
known gravitational spin–orbit interaction even in the simpler case of an external
field. The problem is essentially related to the correct definition of the center–
of–mass coordinate. Moreover, it turned out that the widely used Papapetrou
equations [6] also fail to reproduce in the same c−2 approximation the result
for the gravitational spin–orbit interaction found in the classical work [2]. This
discrepancy was pointed out long ago in [29]; however the explanation suggested
in [29] does not appear satisfactory (see [28]).

The present talk is essentially based on recent work [28,30,31] where the
equations of motion of a relativistic particle were derived with a noncovari-
ant description of spin. These equations agree with well–known limiting cases.
Though for an external electromagnetic field such equations (in the linear in spin
approximation) have been obtained previously [19] (see also [20]), we would like
to start with comments related to this approximation in electrodynamics.

2 Covariant and Noncovariant Equations of Motion
of a Spinning Particle in an Electromagnetic Field

2.1 The Problem with the Covariant Equations of Motion

The interaction of spin with external electromagnetic field is described, up
to terms on the order of c−2 included, by the well–known Hamiltonian (see,
e.g., [32])

H = − eg

2m
s ·B +

e(g − 1)
2m2 s · [p×E] . (1)

Here B and E are external magnetic and electric fields; e, m, s, and p are the
particle charge, mass, spin, and momentum, respectively; g is its gyromagnetic
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ratio. Let us emphasize that the structure of the second (Thomas) term in this
expression not only has been firmly established theoretically, but has also been
confirmed with high accuracy experimentally, at any rate in atomic physics. To
avoid misunderstandings, let us note that, generally speaking, the last term in
formula (1) should be rewritten in a Hermitian form (see, e.g., [33]):

[p×E]→ 1
2
([p×E]− [E × p]) = [p×E] +

i

2
∇×E .

We will be interested, however, in the semiclassical approximation mainly, when
in the interaction linear in spin, field derivatives are neglected. (Besides, the
correction with ∇×E vanishes in the case of potential electric field considered
in [32].)

Let us try to construct a covariant equation of motion accounting for spin,
which would reproduce in the same approximation the force

fm =
eg

2m
sB,m+

e(g − 1)
2m

(
d

dt
[E × s ]m − s[v ×E,m ]

)
, (2)

corresponding to the Hamiltonian (1) (here and below a comma with a subscript
denotes a partial derivative). A covariant correction fµ to the Lorentz force
eFµνuν should be linear in the tensor of spin Sµν and in the gradient of the
tensor of electromagnetic field Fµν,λ , it may depend also on the 4–velocity uµ.
Since uµuµ = 1, this correction must satisfy the condition uµf

µ = 0. From the
mentioned tensors one can construct only two independent structures meeting
the last condition. The first,

ηµκFνλ,κS
νλ − Fλν,κu

κSλνuµ, (3)

reduces in the c−2 approximation to

2s(B,m− [v ×E,m ]), (4)

and the second, v
uλFλν,κu

κSνµ, (5)

reduces to
d

dt
[s×E]m . (6)

Let us note that possible structures with the contraction Fνκ,λS
κλ reduce to (3)

and (5), due to the Maxwell equations and the antisymmetry of Sκλ.
Obviously, no linear combination of (4) and (6) can reproduce the correct

expression (2) for the spin–dependent force. In a somewhat less general way this
was shown in [28].

But why is it that the correct (in the c−2 approximation) formula (2) cannot
be obtained from a covariant expression for the force? Obviously, one can easily
reproduce by a linear combination of (4) and (6) those terms in (2) which are pro-
portional to g. In other words, there is no problem to present in a covariant form
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the terms which describe, so to say, direct interaction of a magnetic moment with
external fields. It is the terms in (2) independent of g and corresponding to the
Thomas precession which cannot be written covariantly. Certainly, the Thomas
precession can be described beyond the c−2 approximation, for arbitrary veloc-
ities. But there are no reasons why this essentially noncovariant phenomenon
should have a covariant description. This is the point.

2.2 What Is the Correct Definition of the Coordinate
of a Spinning Particle?

It was noted in [28] that the covariant formalism can be reconciled with the
correct results if the coordinate x entering the covariant equation is related to
the usual one r in the c−2 approximation as follows:

x = r +
1
2m

s× v. (7)

The generalization of this substitution to the case of arbitrary velocities

x = r +
γ

m(γ + 1)
s× v, γ =

1√
1− v2

. (8)

was pointed out in [20].
But why can the spin precession itself (as distinct from the spin influence

on the trajectory) be described covariantly [4,5] without any concern for the
coordinate definition? First of all, the covariant equations of spin precession

dSµ
dτ

=
e

2m
[
gFµνS

ν − (g − 2)uµFλνu
λSν

]
(9)

(here Sµ is the covariant 4–vector of spin) are written in the semiclassical approx-
imation, i.e., the coordinate dependence of external fields is completely neglected.
Second, equations (9) are linear and homogeneous in spin. So, even if one went
here beyond the semiclassical approach, but stayed within the approximation
linear in spin, the use of the usual coordinate r, which differs from x in terms
proportional to s only, would be completely legitimate.

Of course, the choice of the variable, r or x, is by itself a matter of convention.
But still, which of them is the true center–of–mass coordinate of a relativistic
spinning body?

We note first of all that relation (7) is valid for a free particle as well. So,
to answer the question, it is sufficient to consider a simple example of the free
Dirac particle with the Hamiltonian

H = α · p + β m .

Here, the operator whose expectation value equals to r, is not r itself, but [34]

x = r +
iβα

2ε
− iβ(α · p)p+ [Σ × p] ε

2ε2(ε+m)
; ε =

√
p2 +m2; Σ =

1
2i
[α×α].

(10)
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To lowest nonvanishing order in c−2 expression (10) reduces to

x = r +
1
2m

s× v , s =
1
2
σ , (11)

which might prompt indeed substitution (7). However, under the Foldy–Wout-
huysen (FW) transformation, which separates positive–energy states from nega-
tive–energy ones, the relativistic operator x goes over into mere r. And the
transition from the exact Dirac equation in an external field to its approximate
form containing only the first–order correction in c−2, is performed just by means
of the FW transformation. Thus, in the resulting c−2 Hamiltonian the coordinate
of a spinning electron is the same r as in the completely nonrelativistic case.
Nobody makes substitution (7) in the Coulomb potential when treating the
spin–orbit interaction in the hydrogen atom.

As to a classical particle, it is in fact a well–localized wave packet constructed
from positive–energy states, i.e., it is properly described in the FW representa-
tion. Therefore, it is r which is the true coordinate of a classical relativistic
spinning particle. The same conclusion is made in [35], starting from quite dif-
ferent arguments.

2.3 The Noncovariant Formalism

The correct equations of motion in an electromagnetic field including spin to first
order are known for a fairly long time [19]. Though being fully relativistic, they
are noncovariant and based on the initial physical definition of spin. According
to this definition, spin is the 3–dimensional vector s (or 3–dimensional antisym-
metric tensor smn) of the internal angular momentum defined in the rest frame
of the particle. The covariant vector of spin Sµ (or the covariant antisymmetric
tensor Sµν) are obtained from s (or smn) by the Lorentz transformation. By
the way, an advantage of this approach is that the constraints uµSµ = 0 and
uµSµν = 0 hold identically. The precession frequency for spin s at an arbitrary
velocity is well–known (see, for instance, [32]):

Ω =
e

2m

{
(g − 2)

[
B − γ

γ + 1
v(vB) − v ×E

]

+2
[
1
γ
B − 1

γ + 1
v ×E

]}
. (12)

Naturally, the corresponding interaction Lagrangian (here the Lagrangian for-
mulation is somewhat more convenient than the Hamiltonian one) equals

Le1 = Ω · s =
e

2m
s ·
{
(g − 2)

[
B − γ

γ + 1
v(vB) − v ×E

]

+2
[
1
γ
B − 1

γ + 1
v ×E

]}
. (13)
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The equation of motion for the position has the usual form:

(∇− d

dt
∇v)Ltot = 0, (14)

where Ltot is the total Lagrangian of the system. The equation of motion for the
spin in general form is

ṡ = −{Ltot, s}, (15)

where {... , ...} is the Poisson bracket, or
ṡ = −i[Ltot, s] (16)

in the quantum problem. This applicability of a common canonical formalism is
one more advantage of the noncovariant approach. Meanwhile, in the covariant
approach we have to deal in particular with higher time derivatives, which is
obvious already from relationship (7).

3 Spin Precession in a Gravitational Field

In this section we present a simple and general derivation of the equations of the
spin precession in a gravitational field (restricting to first order in spin), based on
a remarkable analogy between gravitational and electromagnetic fields. Due to
this correspondence, the formulae of the previous section are naturally adapted
for the case of an external gravitational field. In this way we easily reproduce
and generalize known results for gravitational spin effects.

3.1 General Relationships

It follows from the angular momentum conservation in flat space–time taken
together with the equivalence principle that the 4–vector of spin Sµ is parallel
transported along the particle world–line. The parallel transport of a vector
along a geodesic xµ(τ) means that its covariant derivative vanishes:

DSµ

Dτ
= 0 . (17)

We will use the tetrad formalism natural for the description of spin. In view of
relation (17), the equation for the tetrad components of spin Sa = Sµeaµ is

DSa

Dτ
=

dSa

dτ
= Sµeaµ;νu

ν = ηabγbcdu
dSc . (18)

Here
γabc = eaµ;νe

µ
b e

ν
c = −γbac (19)

are the Ricci rotation coefficients [36], §98. Certainly, the equation for the tetrad
4–velocity components is exactly the same:

dua

dτ
= ηabγbcdu

duc . (20)
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The meaning of Eqs. (18), (20) is clear: the tetrad components of both vectors
vary in the same way, due only to the rotation of the local Lorentz vierbein.

In exactly the same way, the 4–dimensional spin and velocity of a charged
particle with the gyromagnetic ratio g = 2 precess with the same angular velocity
in an external electromagnetic field, by virtue of equation (9) at g = 2 and the
Lorentz equation:

dSa
dτ

=
e

m
FabS

b;
dua
dτ

=
e

m
Fabu

b.

Thus, the correspondence:

e

m
Fab ←→ γabcu

c. (21)

becomes obvious. This correspondence makes it possible to obtain the precession
frequency ω of the 3–dimensional vector of spin s in external gravitational field
from expression (12) via the simple substitution

e

m
Bi −→ − 1

2
εiklγklcu

c;
e

m
Ei −→ γ0icu

c. (22)

This frequency is

ωi = −εikl
(
1
2
γklc +

uk

u0 + 1
γ0lc

)
uc

u0w
. (23)

The factor 1/u0w in this expression is related to the transition in the left–hand
side of Eq. (18) to the differentiation with respect to the world time t:

d

dτ
=

dt

dτ

d

dt
= u0w

d

dt
.

A subscript w is attached to the quantity u0w to emphasize that u0w is a world,
but not a tetrad, component of 4–velocity. All other indices in expression (23)
are tetrad ones, c = 0, 1, 2, 3; i, k, l = 1, 2, 3. The corresponding spin–dependent
correction to the Lagrangian is

Lsg = ω · s . (24)

However, in some respect, the first–order spin interaction with a gravita-
tional field differs essentiallly from that with an electromagnetic field. In the
electromagnetic case, the interaction depends, generally speaking, on a free phe-
nomenological parameter, g–factor. Moreover, if one allows for the violation of
P and T invariances, one more parameter arises here, the value of the electric
dipole moment of the particle. The point is that both magnetic and electric dipole
moments interact with the electromagnetic field strength, thus this interaction
is gauge–invariant for any value of these moments. Only the spin–independent
interaction with the electromagnetic vector potential is fixed by the charge con-
servation and gauge invariance. Meanwhile, the Ricci rotation coefficients γabc
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entering the gravitational first–order spin interaction (24), as distinct from the
Riemann tensor, are not covariant. This interaction is fixed in a unique way by
the angular momentum conservation in flat space–time, taken together with the
equivalence principle, it has no free parameters [37,38].

The tetrads eaµ are related to the metric as follows:

eaµebνη
ab = gµν .

In the weak–field approximation there is no difference between the tetrad and
world indices in eaµ. The ambiguity in the choice of tetrads will be fixed by
choosing the symmetric gauge eµν = eνµ . Then (with gµν = ηµν + hµν)

eµν = ηµν +
1
2
hµν .

Using expression (19) for the Ricci coefficients, we find in the weak–field approx-
imation

γabc =
1
2
(hbc,a − hac,b) . (25)

This approach is applied below to the problems of spin–orbit and spin–spin
interactions, as well as to the spin precession in a plane gravitational wave1. We
restrict mostly to the weak–field approximation. However, as distinct from the
standard approaches, all three problems can be easily solved now at arbitrary
particle velocities. The combination of a high velocity for a spinning particle
with a weak gravitational field obviously refers to a scattering problem. Another
possible application is to a spinning particle bound by other forces, for instance,
by electromagnetic ones, when we are looking for the correction to the precession
frequency due to the gravitational interaction.

3.2 Spin–Orbit Interaction

In the centrally symmetric field created by a mass M , the metric is

h00 = − rg
r

=
2kM
r

; hmn = − rg
r

δmn = −2kM
r

δmn. (26)

Here the nonvanishing Ricci coefficients are

γijk =
kM

r3
(δjkri − δikrj) , γ0i0 = −kM

r3
ri . (27)

Plugging these expressions into formula (23) yields the following result for the
precession frequency:

ωls =
2γ + 1
γ + 1

kM

r3
v × r . (28)

In the limit of low velocities, γ → 1, the answer goes over into the classical result
of [2].
1 I am grateful to T. Vargas for attracting my attention to the last problem.
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Let us note here that in the case of an external gravitational field there is no
covariant expression for the force linear in the particle spin. In other words, the
deviation from geodesics of the trajectory of a spinning particle is not described
by the Riemann tensor. If this was the case, there would be a unique possible
covariant structure, to within a factor (in [6] it equals − 1/2m): Rµνabu

νSab. As
mentioned already in Section 1, the covariant description contradicts in partic-
ular the classical result [2] for the gravitational spin–orbit interaction.

3.3 Spin–Orbit Interaction in the Schwarzschild Field

In the present subsection we treat the spin precession in the Schwarzschild field
beyond the weak–field approximation (though neglecting the spin influence on
the trajectory). The 3–dimensional components of the Schwarzschild metric can
be conveniently written as

gmn = −
(
δmn − rmrn

r2

)
− rmrn

r2
1

1− rg/r
= − δ⊥mn − nmnn

1
1− rg/r

. (29)

Nonvanishing tetrads are chosen as follows:

e
(0)
0 =

√
1− rg/r; e(k)m = δ⊥km + nknm

1√
1− rg/r

; (30)

in this subsection the tetrad indices are singled out by brackets. Now the non-
vanishing Ricci coefficients (here their last indices are world ones) are

γ(0)(i)0 = −kM

r3
ri ; γ(i)(j)k =

1−√1− rg/r

r2
(δjkri − δikrj) . (31)

At last, the precession frequency in this case is

ω = −L rg
2mr3

{
2

u0 + u0
√
1− rg/r

+
1

1 + u0
√
1− rg/r

}
. (32)

Here m and L are the particle mass and orbital angular momentum, respectively;

u0 =
dt

dτ
=
{
1− rg/r − (n · v)2(1− rg/r)−1 − (v⊥)2

}−1/2
.

The rather cumbersome general expression (32) simplifies for a circular orbit.
Here

u0 =
(
1− 3kM

r

)−1/2
; L = mr

(
kM

r

)1/2 (
1− 3kM

r

)−1/2
,

so that

ω =
(kM)1/2

r3/2

[
1−

(
1− 3kM

r

)1/2
]
. (33)

The general case of spin precession in the Schwarzschild field was considered
previously in [39]. Our expression (33) agrees with the corresponding result of [39]
(the precession is considered there with respect to the proper time τ , but not
with respect to t).
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3.4 Spin–Spin Interaction

Let the spin of the central body be s0. The components of the metric linear in
s0, which are responsible for the spin–spin interaction, are

h0i = 2k
[s0 × r]i

r3
.

Here the nonvanishing Ricci coefficients are

γij0 = k

(
∇i

[s0 × r]j
r3

− ∇j
[s0 × r]i

r3

)
, γ0ij = −k∇i

[s0 × r]j
r3

. (34)

The frequency of the spin–spin precession is

ωss = −k
(
2− 1

γ

)
(s0∇)∇1

r
(35)

+k
γ

γ + 1
[v(s0 ·∇)− s0(v ·∇) + (v · s0)∇] (v ·∇)

1
r
.

In the low–velocity limit this formula also goes over into the corresponding clas-
sical result [3].

3.5 Spin Precession in a Plane Gravitational Wave

Let a weak gravitational wave propagate along the axis 3. It is well known (see,
for instance, [36], §107) that here coordinate conditions can be choosen in such
a way that the only nonvanishing components of hµν are

h11 = −h22 = f1(t− z), h12 = h21 = f2(t− z).

Straightforward (though rather tedious) calculation with formulae (23), (25),
results in the following expressions for the components of the angular velocity:

ωw1 =
(
1− γ

γ + 1
v3

)
1
2
(ḟ1v2 − ḟ2v1);

ωw2 =
(
1− γ

γ + 1
v3

)
1
2
(ḟ1v1 + ḟ2v2); (36)

ωw3 =
γ

γ + 1

[
ḟ1v1v2 − 1

2
ḟ2 (v21 − v22)

]
.

The equations of motion in a plane gravitational wave, following from the cor-
responding Lagrangian L = ωws, differ essentially from those obtained in [40,41]
within the covariant approach.
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4 Effects of Higher Order in Spin

4.1 Outline of the General Formalism

The above description of the effects linear in spin was obtained by rather simple
means. As to the interaction of second order in spin, it may manifest itself at least
in the motion of rotating black holes (and possibly in some subtle spin effects for
polarized nuclei of high spin in storage rings). Anyway, going beyond the linear
approximation in spin is of a certain theoretical interest. To study this general
problem, we have to resort to a more sophisticated approach [30,31]. It is based
on the following physically obvious argument. As long as we do not consider
excitations of internal degrees of freedom of a body moving in an external field,
this body (even if it is a macroscopic one!) can be treated as an elementary
particle with spin. Thus, the Lagrangian of the spin interaction with an external
field can be derived from the elastic scattering amplitude of a particle with spin
s by external field. In this way we can describe the interaction of a relativistic
particle to first order in the external field, but to arbitrary order in the spin.
Explicit closed formulae were obtained in [30,31] for the interaction of second
order in spin. According to the arguments presented in Section 1, the discussion
of the effects nonlinear in spin may be physically meaningful first of all in the
classical limit s � 1. This limit is certainly adequate for rotating black holes.
However, having in mind the mentioned problem of polarized nuclei, as well as
some theoretical questions, the results were derived in [31] for arbitrary spins.

The accurate derivation of the second-order spin Lagrangians in electrody-
namics and gravity, based on rather sophisticated technique of high spins, can
be found in [30,31]. Here we confine ourselves mainly to a qualitative discussion
of some curious features of the second-order spin interactions.

4.2 Second-Order Spin Effects in an Electromagnetic Field

Even the final formula for the discussed interaction is lengthy:

Le2 =
Q

2s(2s− 1)

[
(s ·∇) − γ

γ + 1
(v · s)(v ·∇)

]
×

×
[
(s ·E) − γ

γ + 1
(s · v)(v ·E) + (s · [v ×B])

]
(37)

+
e

2m2

γ

γ + 1
(s · [v ×∇])

[(
g − 1 +

1
γ

)
(s ·B)

−(g − 1)
γ

γ + 1
(s · v)(v ·B)−

(
g − γ

γ + 1

)
(s · [v ×E])

]
.

Here the particle quadrupole moment Q is defined as usual: Q = Qzz|sz=s.
It is well-known that the electromagnetic interaction of the convection cur-

rent and magnetic moment also contributes in the nonrelativistic limit to the
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quadrupole interaction. The value of this, induced contribution to the quadrupole
moment (already included into Q in formula (37)) is [42]

∆Q = − e (g − 1)
(

�

mc

)2 {
s, integer spin,
s− 1/2, half-integer spin. (38)

We have singled out explicitly in this formula the Planck constant � to demon-
strate that the induced quadrupole moment ∆Q vanishes in the classical limit
� → 0, s → ∞, �s → const. Therefore, the contribution proportional to ∆Q
does not influence in fact equations of motion of a classical particle (though it
plays a role in atomic spectroscopy [42]).

On the other hand, the electromagnetic interactions of the convection current
and spin current also induce an interaction of second order in spin which has
a classical limit and is described by the last two lines of formula (37). This Q-
independent part of the interaction (37) tends to zero in the nonrelativistic limit.
Besides, it is reducible in spin; in other words, the structure sisj in it cannot
be rewritten as an irreducible tensor sisj − (1/3)δijs2 . The Q-independent part
of the interaction (37) does not have a quadrupole structure at all.

Of great interest is the asymptotic behaviour of the interaction (37) at
γ → ∞ . Surprisingly, though both Q-dependent and Q-independent parts of
the interaction (37) by themselves grow up with energy, there is a singled out
value of the quadrupole moment for which this interaction as a whole falls down
at γ →∞ .

The situation resembles that which takes place for the interaction linear in
spin. It is well-known (see, e.g., [11,43,44]) that there is a special value of the
g-factor, g = 2, at which the electromagnetic interaction linear in spin, decreases
with increasing energy. This follows immediately from formula (12) for γ →∞.
Thus, the choice g = 2 for the bare magnetic moment is a necessary (but insuffi-
cient!) condition of unitarity and renormalizability in quantum electrodynamics.
It holds not only for the electron, but also for the charged vector boson in the
renormalizable electroweak theory. Other arguments in favour of g = 2 are given
in [45-49].

The same situation takes place with the second-order spin interaction in
electrodynamics. There is a special value of the quadrupole moment Q at which
this interaction as well decreases with increasing energy. If we also assume g = 2,
this value is

Q = − s(2s− 1)
e

m2 . (39)

The same preferred value of the quadrupole moment was derived also otherwise,
basing on the supersymmetric sum rules [46,48,49]. Again, (39) is a necessary
condition of unitarity and renormalizability. And indeed, this is the value of
the quadrupole moment of the charged vector boson in the renormalizable elec-
troweak theory. For it

g = 2 , s = 1 , Q = −e/m2 .
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4.3 Second-Order Spin Effects in a Gravitational Field

For a binary star effects of second-order in spin are of the same order of mag-
nitude as the spin-spin interaction when the spins of the components of the
system are comparable [28]. The influence of the latter on the characteristics
of the gravitational radiation becomes noticeable for a system of two extreme
black holes [25]. Correspondingly, second–order spin effects in the equations of
motion become substantial if at least one component of a binary is close to an
extreme black hole [28]. Therefore, the investigation of these effects is not of
a purely theoretical interest only. In principle they can be observed with the
gravitational wave detectors under construction.

Though the second–order gravitational spin interaction can be obtained with-
in our general approach as well, we will resort here to an instructive short–cut
which allows to derive easily the so–called gravimagnetic interaction [11], a grav-
itational analogue of the Q–dependent terms in formula (37). It was mentioned
already that the analogy between first–order spin interactions in electrodynamics
and gravity is incomplete. The electromagnetic interaction depends on the field
strength, which is gauge–invariant. However, the gravitational one depends not
on the Riemann tensor, which is generally covariant, but on the Ricci rotation
coefficients, which are not. In this respect, the second–order spin interaction dis-
cussed below, the gravimagnetic one, which depends on the Riemann tensor, is
the gravitational analogue of the first–order spin interactions in electrodynamics.

The starting point of the derivation is the observation that the canonical
momentum pµ enters a relativistic wave equation for a particle in external elec-
tromagnetic and gravitational fields through the combination

Πµ = pµ − eAµ − 1
2
Σabγabµ.

Here Σab are the generators of the Lorentz group; γabµ = ecµγabc. The commu-
tation relation

[Πµ, Πν ] = −ieFµν +
i

2
ΣabRabµν (40)

demonstrates the remarkable correspondence

eFµν ↔ − 1
2
ΣabRabµν . (41)

The squared form of the Dirac equation in an external electromagnetic field

(−gµνΠµΠν +m2 + eΣabFab)ψ = 0

prompts the correct conclusion that for an arbitrary spin s the Lagrangian
−e/(2m)ΣabFab describes the magnetic moment interaction for g = 2; the factor
1/(2m) in this Lagrangian, additional to the above wave equation, becomes obvi-
ous from the comparison with the nonrelativistic limit. Clearly, for an arbitrary
g–factor this covariant magnetic moment interaction is

Le1 = − eg

4m
FabΣ

ab. (42)
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This is in fact a covariant form of g–dependent terms in the Lagrangian (13).
As to the g–independent, Thomas terms in (13), it was pointed out already that
they cannot be presented in a covariant form with the usual, physical definition
of the coordinate r. It is natural to define, in analogy with the magnetic moment

eg

2m
Σab ,

the gravimagnetic moment
− κ

2m
ΣabΣcd .

Now, the correspondence (41) prompts the following gravitational analogue of
the Lagrangian (42):

Lgm =
κ

8m
ΣabΣcdRabcd. (43)

This is what we call the gravimagnetic interaction. Let us note that in the
classical limit Σab → Sab = εabcdScud.

The gravimagnetic ratio κ, like the gyromagnetic ratio g in electrodynamics,
may have in general any value. Still, it is natural that in gravity the value κ = 1
is as singled out as g = 2 in electrodynamics. Indeed, the analysis of the complete
Lagrangian for the gravitational interaction of second order in spin, including of
course κ–independent terms which correspond to the Q–independent terms in
(37), demonstrate that just for κ = 1 this total interaction asymptotically tends
to zero with increasing energy [11,30,31]. The same conclusion is made in [50-53].
Unfortunately, the gravitational interaction for any spin is not renormalizable
even at κ = 1.

In any case, at g = 2 and κ = 1 the equations of motion have the simplest
form. Moreover, it has been shown in [11] that just this value of the gravimagnetic
ratio, κ = 1, follows from the wave equations in the Feynman gauge both for
the photon and graviton in an external gravitational field, as well as from the
Rarita–Schwinger equation for s = 3/2 in a gravitational field.

The situation for spin 1/2 is rather tricky. Obviously, no second–order spin
interaction is possible here. Indeed, for spin 1/2 the properties of the spin ma-
trices Σab = i/4(γaγb − γbγa) are such that ΣabΣcdRabcd degenerates into the
scalar curvature R (times 1/2) without any spin dependence at all. So, our ar-
guments in favour of κ = 1 do not apply for spin 1/2. And indeed the squared
Dirac equation contains 1/4R, but with κ = 1 one obtains here 1/8R. Never-
theless, we cannot see any real physical meaning in the recent proposal [54] to
ascribe to the electron (which in fact has no gravimagnetic interaction at all)
the gravimagnetic ratio κ = 2.

Wave equations for particles of arbitrary spins in an external gravitational
field were previously considered in [55]. The equation for integer spins proposed
in [55] corresponds also to the gravimagnetic ratio κ = 1. However, the value
of κ prescribed in [55] for half–integer spins is different. Even in the classical
limit s→∞ it does not tend to unity. This obviously does not comply with the
correspondence principle according to which at least in this classical limit there
should be no difference between integer and half–integer spins.
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5 Multipoles of Black Holes

Let us come back from elementary particles to macroscopic bodies. For a classical
object the values of both parameters g and κ depend in general on the various
properties of the body. However, for black holes the situation is different. It
has been shown in [56] from an analysis of the Kerr–Newman solution that the
gyromagnetic ratio of a charged rotating black hole is universal (and equal to
that of the electron!): g = 2.

We will show that for the Kerr black hole the gravimagnetic ratio is κ =
1. This value follows in fact from the analysis of the motion of the spin of a
black hole in an external field in [24] (though this statement was not explicitly
formulated there). We present here an independent and, in our opinion, simpler
derivation of this important result.

At large distances from a Kerr hole, the hole can be considered as a point
source of a weak gravitational field. To linear approximation in the field of a
hole at rest, the Lagrangian density corresponding to the interaction (43) can
be written as

L̃ =
κ

4m
(s ·∇)2 h00 δ(r) . (44)

This interaction unduces a correction to the energy–momentum tensor in a single
component:

δT00 = − κ

2m
(s ·∇)2 δ(r) . (45)

In the gauge

h̄µν ,ν = 0, h̄µν = hµν − 1
2
ηµνh

α
α , (46)

the static Einstein equation for the corresponding correction h00 to the 00–
component of the metric is

∆h00 = 8πkT00 .

The correction itself is

h00 = κ
k

m
(s ·∇)2

1
r
. (47)

Let us compare h00 with the corresponding contribution to the Kerr metric.
In the Boyer–Lindquist coordinates this metric is

ds2 = (1− rgr

Σ
) dt2 − Σ

∆
dr2 − Σ dθ2

− (r2 + a2 +
rgra

2

Σ
sin2 θ) r2 sin2 θ +

2rgra
Σ

sin2 θ dφ dt , (48)

where ∆ = r2 − rgr + a2 , Σ = r2 + a2 cos2 θ , a = s/m. At rg = 0 the
metric (48) describes a flat space in spheroidal coordinates [36]. Meanwhile, it is
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Cartesian coordinates which correspond in the flat space to the gauge (46). The
transition from the spheroidal coordinates to Cartesian ones is carried out with
the required accuracy by the substitution

r → r +
a(a · r)− ra2

2r2
.

In the Cartesian coordinates the spin–dependent part of the 00–component of
the metric

g00 = 1− rg
r

+
rga

2

2r3
(3 cos2 θ − 1)

obviously coincides with h00 from formula (47) at κ = 1. Somewhat more tedious
consideration of the space components of the Kerr metric leads to the same
result, κ = 1.

Let us note that the motion of the Kerr black hole in an external gravita-
tional field is not described by the Papapetrou equation even if one leaves aside
the problem of the spin–orbit interaction linear in spin. The point is that this
equation refers to the case κ = 0 [14].

It is proven in the same way that for a charged Kerr hole the gravimagnetic
ratio κ is also unity. Moreover, the electric quadrupole moment of a charged
Kerr hole also equals

Q = − 2
es2

m2 , (49)

the value, at which the interaction quadratic in spin decreases with energy (this
is the obvious limit of the general formula (39) at s → ∞). It can be demon-
strated [57] that other, higher multipoles of a charged Kerr hole, both electro-
magnetic and gravitational, as well possess just those values which guarantee
that the interaction of any order in spin (but of course, linear in an external
field) asymptotically decreases with increasing energy.

6 Gravitational Interaction of Spinning Bodies,
and Radiation of Compact Binary Stars

It is expected that in a few years the gravitational radiation from coalescing
binary stars will be observed by laser interferometer systems. Its successful de-
tection depends crucially on the accurate theoretical prediction of the exact
form of the signal. In this way the observed effect becomes sensitive to the rel-
ativistic corrections of the orders c−2, c−3 and c−4 to the motion of a binary
system and to the radiation intensity. In particular, the spin–orbit interaction
becomes essential. Moreover, effects of second order in spin may be observed in
the gravitational radiation, in the case of two extreme Kerr black holes [25].

6.1 Spin Interactions in a Two–Body Problem

The spin interactions in a two–body problem can be easily obtained from the
well–known results for the limiting case when one of the bodies (say, 2) is very
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heavy. In this limit we have the usual spin–orbit interaction with the frequency
ωls given in fact by formula (28) (the limit γ → 1 is sufficient here):

V 1
1ls = −ωlss1 =

3
2

k

r3
m2

m1
ls1. (50)

Then, there is the well–known Lense–Thirring interaction of the orbital angular
momentum l with the spin s2 of the central body [58]

V 1
2ls = 2

k

r3
ls2. (51)

Simple symmetry arguments dictate now the form of the total spin–orbit inter-
action for the two–body problem:

Vls =
k

r3
l ·
[
3
2

(
m2

m1
s1 +

m1

m2
s2

)
+ 2 (s1 + s2)

]
. (52)

As to the spin–spin interaction, it is of the usual form, with ωss given by formula
(35) (again the lowest nonvanishing order in 1/c is implied):

Vss =
k

r3
[3(s1n)(s2n)− s1s2]. (53)

Of course, both expressions (52) and (53) can be derived directly, following, for
instance, the approach of [36] (§106, Problem 4).

Let us go over now to the gravimagnetic interaction. This interaction (43)
for a particle 1 with the field created by a heavy mass m2 reduces in lowest, first
order in c−2 to the quadrupole form:

V 1
s =

3km2

2r3
Qs
1mnnmnn (54)

where the effective gravitational quadrupole moment of the particle 1 is

Qs
1mn =

κ1
m1

( s1ms1n − 1
3
δmns

2
1) .

For the two–body problem under discussion, expression (54) generalizes to the
following self–interaction of spin:

Vs =
3k
2r3

(
κ1

m2

m1
s1ms1n + κ2

m1

m2
s2ms2n

)
(nmnn − 1

3
δmn) , (55)

resembling the usual spin–spin interaction (53).
At κ1,2 ∼ 1 the effective quadrupole interaction (55) is of the same order of

magnitude as the spin–spin one (53). Even in the most favourable case when they
can become important, that of two extreme Kerr black holes, both interactions
are of the c−4 order. The star rotation velocity is here ∼ c, but the star radius is
close to the gravitational one rg ∼ c−2, so that each spin s ∼ c−1 [25]. The same
argument demonstrates that the spin–orbit interaction is of the c−3 order [25].

As to the common quadrupole interaction, due to quadrupole deformations of
the stars, it is suppressed by the small value of these deformations and, according
to [59], can also manifest itself only in the case of two extreme Kerr black holes.
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6.2 Contribution of Spin Interactions to Gravitational Radiation

The spin interactions contribute in various ways to the gravitational radiation:
through spin–dependent corrections to the orbit radius r and to the equations
of motion used to evaluate the time derivatives, which enter the usual expres-
sion for the gravitational quadrupole radiation; through the corrections to the
00 component of the energy–momentum tensor of the particles; through the
gravitational analogue of the magnetic quadrupole radiation in electrodynamics;
through retardation effects.

In all our discussions of gravitational radiation we restrict ourselves to the
case of circular orbits which is the most interesting one from the physical point
of view [25]. Besides, the assumption of circular orbits simplifies essentially the
calculations. Still the calculations remain tedious, so only the final results are
presented here.

The relative correction to the radiation intensity generated by the spin–orbit
interaction (52) is [28]

Ils
Iq

= − l ( 73 s + 45 ξ )
12m1m2r2

. (56)

Here

Iq =
32k4m2

1m
2
2(m1 +m2)
5r5

is the unperturbed quadrupole intensity and

s = s1 + s2; ξ =
m2

m1
s1 +

m1

m2
s2.

It can be easily checked that the corresponding result of [25,26] would be recon-
ciled with this one under the proper definition of the center–of–mass coordinate.

The correction due to the spin–spin interaction (53) is [25,26]

Iss
Iq

=
1

48m1m2r2
( 649 s1ts2t − 223 s1s2). (57)

The expressions for Iss, as well as that for Is below, have been averaged over
the period of rotation. That is why both of them contain the spin components
st orthogonal to the orbit plane.

And at last, the spin–self–interaction correction, generated by the gravimag-
netic interaction (55) and by the above–mentioned gravitational analogue of the
magnetic quadrupole radiation in electrodynamics, is [28]

Is
Iq

=
1

4m1m2r2

[(
27κ1 − 1

24

)
m2

m1
s21t +

(
27κ2 − 1

24

)
m1

m2
s22t

−
(
9κ1 − 7

24

)
m2

m1
s21 −

(
9κ2 − 7

24

)
m1

m2
s22

]
. (58)

This correction is discussed also in [60].
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The GEO600 Gravitational Wave Detector
Status, Research, Development

Albrecht Rüdiger and Karsten Danzmann for the GEO team

Max-Planck–Institut für Quantenoptik, Garching and Hannover, Germany

Abstract. The last few years have brought a great break–through in the quest for
earth–bound detection of gravitational waves: at five sites, laser–interferometric detec-
tors, of armlengths from 0.3 to 4 km, are being built. These projects have in common
that one prominent noise source, the shot noise, is reduced by the use of power re-
cycling. By using advanced optical technologies early on, the German–British project
GEO 600, although only intermediate in size (600m), has good chances for a compet-
itive sensitivity, at least with the first versions of the larger detectors. Particularly the
use of the so–called signal recycling technique will allow to search for faint sources of
only slowly varying frequency (pulsars, close binaries). The talk will describe the par-
ticular topology of the GEO 600 interferometer, characterized by the use of a four–pass
delay line and signal recycling. The major noise sources, and the experimental effort
aiming at their reduction, will be discussed. The current status of the construction of
GEO 600 will be outlined (civil engineering, vacuum, optics). The research and de-
velopment activities at the experimental sites (Garching, Glasgow, Hannover) will be
given broad emphasis. First science runs of GEO 600, well in time with those of other
ground–based interferometers, are expected in the year 2001.

1 Introduction

The construction of laser interferometers for the detection of gravitational waves
is being pursued by various groups all over the world and, due to their particular
preferences, their past history, and their funding, differing approaches have been
developed. This diversity can, at the present stage, be seen as a great asset, as it
will allow the community to develop and investigate a wide variety of promising
schemes and evaluate their respective merits.

It is particularly in this field of research and development that a fruitful
collaboration within the whole gravitational–wave community can and should
be intensified.

This paper will give an account of the current status of the German–British
project GEO 600 and elaborate on the various fields of research and development
at the main centers of GEO activity: Hannover, Glasgow, and Garching. In many
of these fields, the GEO groups have taken a leading role.

2 The GEO 600 Concept

At five sites, large–scale gravitational wave detectors using laser interferometry
are being built and are nearing completion: at two sites in the US, interferome-
ters of 4 km are being built (LIGO), the French–Italian collaboration VIRGO is

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 131–140, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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building a 3 km detector near Pisa, and on a somewhat smaller scale, with 600m
and 300m armlength: the German–British antenna GEO 600 near Hannover,
and the Japanese antenna TAMA near Tokyo.

In the case of GEO 600, the smaller armlength was not a matter of choice, but
one of necessity. The site (on grounds belonging to the University of Hannover)
cannot accommodate a larger antenna, and the funds did not allow buying or
leasing ground elsewhere. This paper will try to outline how this shortcoming in
length is to be compensated, at least partially, by the application of advanced
interferometric techniques.

Fig. 1. DL 4 configuration of the GEO 600 interferom-
eter. Two extra mirrors MPR and MSR for power and
signal recycling.

In its arms, GEO 600
will employ an optical de-
lay line with only four
light transits (DL 4), as
shown in Fig.1. After be-
ing bounced off the dis-
tant mirror the beam is
reflected at the near mir-
ror and retraces its path
back to the beam–splitter
BS. This DL4 scheme dif-
fers from the conventional
Herriot delay line, which
would pose problems in
size, in scattered light
effects, and in separat-
ing incoming and outgoing
beam.
The DL4 configuration is
distinct in so far as it
has the highest number of
beams (4) that one can

support in a delay line made only of ‘small’ mirrors (the GEO 600 mirrors will
nevertheless have a diameter of 18 cm).

An outstanding characteristic of the GEO 600 concept is the use of ‘dual
recycling’ [1,2]: In addition to the scheme of power recycling, which is now stan-
dard in all the large detectors, a further mirror (MSR) is introduced in the output
port, to allow a resonant enhancement of the sidebands that the gravitational
wave produces from the carrier beam.

3 Noise Contributions

To obtain the projected sensitivity, extensive theoretical and experimental work
is required to reduce the contributions of noise that would limit the sensitivity
of GEO 600. These efforts (some are very similar to work going on at other
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institutions) are being carried out at Hannover, Glasgow, and Garching, with
assistance also from the institutions at Cardiff and Potsdam.

Some of the more prominent noise sources (but by no means an exhaustive
list) will be discussed below. Although these noise contributions are very serious,
current technologies can reduce them to a level at which an interesting sensitivity
of GEO 600 can be attained.

3.1 Seismic Noise

The influence from external mechanical vibrations, i.e. from seismic noise, is
strongly reduced by a multiple pendulum suspension, indicated in Fig.2. With
triple pendulum suspensions for the most critical optical components (mirrors,
beam splitter), and double pendulums for the less critical components, GEO 600
is making a very ambitious effort, topped only by the even more extreme design
of the VIRGO project with its seven pendulum stages. Installation at GEO has
begun.

GEO’s multiple pendulums are hung from a set of cantilever springs for
better vertical isolation. These springs are supported by a top frame that itself
is isolated via an encapsulated stack of ‘rubber’ and metal layers.

Underneath this stack, an active seismic control (feedback plus perhaps feed-
forward) will provide further isolation down to very low frequencies.

The forces to the test mass pendulummasses are applied from reaction masses
that are similarly suspended, to avoid direct coupling from ground noise. The
forces to the intermediate masses are applied via coil–and–magnet actuators. For
the application of only very minute forces to the actual test masses (the lowest
stage), an electrostatic scheme is being considered.

Work in this field was led by the Glasgow group, with contributions also
from JILA (active isolation) and in close collaboration with the other GEO
laboratories. The GEO pendulum design is a candidate for the suspension of the
masses in the Advanced LIGO.

3.2 Thermal Noise

The thermal (‘Brownian’) noise of the suspended optical components can be
split into two separate regimes: the internal vibrations of the solid suspended
bodies (mirrors, beamsplitters), and the pendulation modes due to the pendulum
suspension. Both must be kept as low as possible, to the very limit of current
technology (or beyond).

The internal mechanical vibrations of the mirrors (the ‘test masses’) can
be kept low by choosing materials of very high mechanical Q, such as pure
fused silica, sapphire, or even silicon. (Note that the mirrors used in the DL4
scheme do not need to be transparent.) Elaborate methods of attaching the
suspending ‘wires’ are required so as not to compromise the intrinsic Q. Glasgow
and Hannover have worked out viable solutions, andQ values of 5×106 and better
have been achieved with fused silica mirrors. This internal noise is responsible
for the rather shallow portion of the curve ‘thermal noise’ in Fig.3, above 50Hz.
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Schematic of tank TCE (view perpendicular to optic axis)
(not to scale)

stack stabiliser

stack 

rotational stage

2 stacks have been omitted for clarity

reaction mass

cantilever spring

tank centre

upper
mass

damping
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intermediate 
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front surface
of test mass
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Fig. 2. Schematic of the GEO suspension. The ac-
tual test mass is on the right–hand side, forces are
applied from equally quiet reaction masses, to avoid
introducing ground noise.

Also for the pendulum mo-
tion, extremely low–loss wires
or fibers, and very elabo-
rate techniques for attach-
ing these ‘wires’ to the solid
masses were developed, and
very promising results were
obtained, again by research
carried out both at Glasgow
and Hannover [3].

Low–loss silica fibers (or
thin ribbons) were welded on
to small silica prisms, and
these were, in turn, attached
to the mirrors using a bonding
technique developed at Stan-
ford, by ‘hydroxy–catalysis
bonding of silicates’ [4]. This
method turned out to be
very successful. The measure-
ments on these pendulums
were done in close collabora-
tion with the VIRGO group at
Perugia. The pendulum ther-
mal noise is the cause of the
steep rise of the thermal noise
curve as one goes to lower fre-
quencies (in GEO 600 below,
say, 30Hz).

3.3 Laser Noise

The development of the laser system for GEO 600 is mainly in the hands of Laser
Zentrum Hannover (LZH). The master/slave system, with its highly stabilized
Nd:YAG MISER as ‘master’ and a powerful slave, are now completed, 14W are
realiably available [5]. The master is already out at the site. Improved stabiliza-
tion of the laser with respect to frequency and power is the goal of work going
on at Hannover.

The geometrical noise of the beam, i.e. fluctuations in position, orientation,
and shape of the beam, are greatly reduced by the use of ‘mode–cleaners’ first
introduced by the GEO groups [6,7]. GEO 600 will use two in series, and inten-
sive work was done at Glasgow. These mode–cleaners are the first units being
optically tested, in the late months of 1999. Mirrors and seismic isolation are
installed, and locking of the first stage has been achieved.
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4 Shot Noise

A very fundamental noise source is the shot noise produced by the ‘graininess’
of the detected light. Its effect decreases with the square root of the available
light power. To reach sensitivities that make the detection of events from as far
out as the Virgo cluster possible, light powers in the order of 10 kW are needed.

As these light powers cannot be supplied by today’s lasers, the scheme of
‘power recycling’ will be applied in GEO 600, as in all other detector projects.
The cavity composed of the Michelson interferometer and the power recycling
mirror MPR is designed to resonantly enhance the light power by three orders
of magnitude. Recycling gains in the order of 300 have been obtained [8] in the
Garching 30–meter prototype.

5 The GEO600 Sensitivity

Fig.3 shows the predicted sensitivity (i.e. the spectral density of the apparent
strain noise) of GEO 600, resulting from the expected contributions of the various
noise sources.

Having the signal sidebands resonate in the cavity formed by the Michelson
interferometer as the one (albeit very complex) mirror, and the signal–recycling
mirror MSR as the other, will make the signal response a rather complicated
function of the GW frequency, which can be adapted to a variety of requirements.

On the left–hand side, the broadband operation of GEO 600 is shown, ex-
hibiting a broad noise minimum around a frequency of 200Hz. The limiting
effects are thermal noise between 40 and 200Hz and shot noise from 300Hz on
upward.

By appropriate choice of the transmission of the ‘signal recycling mirror’, a
narrowband operation is possible, and the antenna can (by microscopic posi-
tioning of the mirror MSR) be tuned to a given frequency, e.g. to a known or
expected GW source. This is indicated in the righthand diagram, showing a dip
in the shot–noise contribution at 600Hz.

In this way, the limitation due to shot–noise can be reduced, if one is willing
to “sacrifice” measuring bandwidth. There can be very good reasons to do that:
for a nearly continuous–wave signal, as in the early stages of a binary inspiral, the
signal frequency changes only very slowly, and narrow–banding at the ‘response’
level reduces noise much more effectively than narrow–banding at the data–
analysis level. But, of course, the thermal noise (intrinsic noise of the mirrors)
does then limit the sensitivity.

6 Interferometry

A major subject of research at GEO 600 was the design, the analysis, and a
critical assessment of various advanced interferometric techniques: dual recy-
cling [1,2] and resonant sideband extraction [9] appear to have great potential
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Fig. 3. Noise spectral density of GEO 600, shown for two operating modes: for broad-
band (top) and narrowband operation (bottom).

also for future large detectors. But also the feasibility of other interferometric
schemes (e.g. Sagnac [10]) was explored.

Of the schemes investigated, it will be particularly the scheme of ‘dual re-
cycling’ that will find application in GEO 600. Elaborate simulation programs
were written (e.g. [11]), compared at a Workshop in Garching, and shared with
colleagues from other groups.

At that workshop, also a variety of other software tools were presented to
assist in the optical design [12] and development of controls [13] for advanced
interferometry. These have been (or will be) made available to everybody in the
community.
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7 Civil Engineering

GEO 600 was, from the beginning, a project that had to take into account a very
low budget (the lowest of the world–wide community). Many of the features in
GEO’s implementation are thus dictated by budget considerations. This was, at
times, a great burden, but it also gave an incentive for designing and developing
very cost–efficient techniques that can become the basis also for future large–
scale detectors.

7.1 Construction

The construction of the central house and the end houses had been completed
in 1997. The size of these buildings is at the lower limit, the accommodation
of electronics and other equipment is scant, but sufficient. Some mechanical
equipment is available at the site, but the main workshops are at the university
site in Hannover.

The clean–room environment is a low–cost design which, however, turned out
to be working very satisfactorily; a clean–room class 100 was readily achieved,
and further improvement during critical work can be achieved by using laminar–
flow tents above the vacuum tanks.

The connecting trenches that house the vacuum tubes were finished even
earlier. The trenches are open constructions, the sides consisting of steel panels
driven into the ground. For weather protection, they are loosely covered with a
corrugated steel roofing.

7.2 Electronics and Data Management

Most of the electronics is designed and built by the labs in Glasgow, Hannover,
and Garching. Communication between the buildings will be exclusively via glass
fiber, to avoid crosstalk. The data can be sent via direct radio communication
to the University of Hannover for on–line monitoring and possible remote inter-
action, and from there via fast data links to Potsdam and Cardiff for analysis.

8 The Vacuum System

8.1 Vacuum Pumps

The good vacuum required in the whole apparatus is made possible by powerful
turbo–molecular pumps that are situated in the central house and in the end
houses. They will run continuously, i.e. also during measurements; the magnetic
bearings allow a very quiet operation.
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8.2 Vacuum Tubes

Fig. 4. The convoluted tubes during installation;
with each new 4.5m piece welded on, the tube was
slid 4.5m further into the 600m long trench, using
trolleys along the aluminum rail at the top.

GEO 600 has tried a very cost–
effective way of producing the
vacuum tubing. The tube is
made of pieces of 60 cm diam-
eter stainless steel tubes of less
than 1mm thickness. The nec-
essary stiffness against air pres-
sure stems from a bellows–type
convolution with a few cm pe-
riod (see Fig.4). The tube is sus-
pended from crossbars that tra-
verse the trench.

8.3 The Vacuum
Achieved

The tubes, wrapped in a 20 cm
layer of rock wool, were first air–
baked at 200 ◦C for one week,
and then baked under vacuum
for several more days. The vac-
uum achieved, in the range of
10−9mbar, is by far sufficient.
The tubes are supposed never
to be let up to air again: they
are shut off with gate valves
when opening the vacuum tanks
becomes necessary, as in the
present phase of installation of suspensions.

8.4 Vacuum Tanks

The vacuum tanks (9 in the central house, one each in the end houses) have
been leak–tested, baked out, and installed. The metal–and–rubber stacks, three
per tank, are encapsulated in steel bellows to protect the vacuum. They are
finished, most already installed. They will carry the top suspension structures,
from which double or triple pendulums will carry the main optical components.

9 The 30 Meter Prototype

Many of the advanced interferometric concepts require verification and optimiza-
tion by laboratory experiments. Such experimental development went on at the
Glasgow 10m prototype, as well as at the Garching 30m prototype. It is the
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Fig. 5. The Garching 30m prototype.

latter that will be treated here in some more detail. For a full discussion, see
[16].

The Garching 30m prototype (Fig.5) was used for verifying the concepts of
power and signal recycling, and for experimentally investigating the demands on
the overall control system.

The laser (here still an Argon ion laser) is first stabilised against a reference
cavity, and then against the power recycling cavity consisting of the interferom-
eter and the mirror MPR. A fully automatic alignment system for controlling 10
mechanical degrees of freedom provides the stability of the settings of the opti-
cal components [14]. The frontal (‘Schnupp’) modulation simplifies the read–out
with which the Michelson interferometer is kept in lock, as compared with the
previous concept of ‘external modulation’.

Only after this set–up was sufficiently robust, the next step, the introduction
of the signal recycling mirror MSR, was started. Error signals for controlling its
position are obtained with the same Schnupp modulation, using an additional
photodetector, PD4. One big problem in such complicated interferometers is the
fact that many of the control loops can work properly only after all other loops
are locked. The operation of prototypes is essential in finding feasible schemes
for this lock acquisition problem. The appropriate arm lengths between beam
splitter and the four mirrors were chosen with the help of an elaborate simulation
code, developed in close collaboration between Glasgow and Garching.

With all of this cautious preparatory work done, acquiring lock of the signal
recycling loop was then surprisingly easy, and gave the expected enhancement
of the signal response [15]. It furthermore gave evidence of the important effect
of ‘mode healing’ when signal recycling is introduced: Only those transversal
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modes that are supported by the signal recycling cavity will be dominating at
the output photo diode, which results in a contrast enhancement.

At the beginning [15], the output was still dominated by an excessive fre-
quency noise contribution from the laser. Solving this problem gave a consider-
able improvement in sensitivity, but studies for further noise reduction are going
on.

10 Data Management

An integral part of GEO 600 are the groups at Cardiff and Potsdam. In working
on the theory of gravitational wave sources, they help to choose the right settings
for the detector parameters. The choice of the data acquisition hardware and the
development of the software is made in close collaboration with these groups.
Strategies for sensitive and efficient signal detection are being developed both at
Potsdam and Cardiff.

11 Outlook

The aim of GEO 600 is to have first science runs of the interferometer in the
year 2001. This is well within the time when also other large detectors will begin
taking data. It will be an exciting time to see gravitational wave astronomy to
come about.

An interesting mix of theoretical, experimental, and technical problems is yet
ahead of us, and these tasks could very well, and with benefit for all, be tackled
in an international collaboration, by an exchange of ideas as well as of personnel.
The GEO groups explicitly endorse any such collaboration.
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Abstract. The paper gives an introduction to the gravitational radiation theory of
isolated sources and to the propagation properties of light rays in radiative gravitational
fields. It presents a theoretical study of the generation, propagation, back–reaction, and
detection of gravitational waves from astrophysical sources. After reviewing the various
quadrupole–moment laws for gravitational radiation in the Newtonian approximation,
we show how to incorporate post–Newtonian corrections into the source multipole
moments, the radiative multipole moments at infinity, and the back-reaction potentials.
We further treat the light propagation in the linearized gravitational field outside a
gravitational wave emitting source. The effects of time delay, bending of light, and
moving source frequency shift are presented in terms of the gravitational lens potential.
Time delay results are applied in the description of the procedure of the detection of
gravitational waves.
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1 Introduction

It was only in the late fifties of the twentieth century that by the work of Her-
mann Bondi and Joseph Weber gravitational radiation entered the domain of
physics. Before that time gravitational radiation was not considered to be of ob-
servational relevance and the gravitational radiation theory was not developed
very deeply.

The supposed detection of gravitational radiation by J. Weber in the late
sixties triggered strong and still on-going efforts both in the building of grav-
itational wave detectors and in the elaboration of the gravitational radiation
theory, including investigations of the most reliable sources of detectable gravi-
tational waves, calculations of wave forms, and analysis of data from detectors
(cf. [1]). It turned out that coalescing neutron stars and/or stellar-mass black
holes, together with gravitationally collapsing objects (type II supernovae), are
the most relevant sources for detectable gravitational waves on Earth because
they are strong and fit well to the frequency band of the Earth-based detectors
which ranges from 10 Hz to 10 kHz. The strength of these sources is such high
that several detection events per year might be expected in future fully devel-
oped detectors. The most sensitive Earth-based detectors will go into operation
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in the first few years of the new millenium. These are the laser-interferometric
detectors in Germany, GEO600, built by a German/British consortium, in Italy,
VIRGO, built by a Italian/French consortium, the two LIGO detectors in the
United States, and the TAMA300 detector in Japan. There are several bar detec-
tors already operating on Earth (ALLEGRO in the United States, AURIGA and
NAUTILUS in Italy, EXPLORER at CERN, NIOBE in Australia). These de-
tectors are being permanently upgraded and will be supplementing the measure-
ments of the interferometric detectors later. For the measurement of gravitational
waves in the frequency range between 0.1 Hz and 0.1 mHz the space-borne laser-
interferometric detector LISA is devised which is expected to be flown around
2010 by NASA/ESA. The astrophysical sources of the gravitational waves to
be detected by this detector are a variety of orbiting stars (interacting white
dwarf binaries, compact binaries), orbiting massive black holes, as well as the
formation and coalescence of supermassive black holes. Stochastic gravitational
waves from the early universe are expected to exist in the whole measurable
frequency range from 104 Hz down to 10−18 Hz. The tools to possibly measure
the primordial waves are the mentioned Earth-based and space-borne detectors,
Doppler tracking, pulsar timing, very long baseline interferometry, as well as the
cosmic microwave background.

On the theoretical side there are essentially two approaches which permit to
investigate the properties of and to make predictions about gravitational waves
from various sources. The first approach, that we can qualify as “exact”, stays
within the exact theory, solving or establishing theorems about the complete
non-linear Einstein field equations. Within this approach one can distinguish
the work dealing with exact solutions of the field equations in the form of plane
gravitational waves, and especially colliding plane waves. Since the waves are
never planar in nature, this work is not very relevant to real astrophysics, but
its academic interest is important in that it permits notably the study of the
appearance of singularities triggered by collisions of waves. Also within the exact
approach, but more important for applications in astrophysics, is all the work
concerned with the study of the asymptotic structure of the gravitational field of
isolated radiating systems. The work on asymptotics started with the papers of
Bondi et al. [2] and Penrose [3]. The second approach is much more general, in
the sense that it is not restricted to any particular symmetry of the system, nor it
is applicable only in the far region of the system. However, the drawback of this
approach is that it is only approximate and essentially looks for the solutions of
the Einstein field equations in the form of formal expansions when c→∞ (post-
Newtonian approximation). This approximate post-Newtonian method can be
applied to the study of all theoretical aspects of gravitational radiation: the
equations of motion of the source including the gravitational radiation reaction
(works of Einstein, Infeld, and Hoffmann [4], Chandrasekhar and Esposito [5],
Burke and Thorne [6–8], Ehlers [9], Papapetrou and Linet [10], Damour and
Deruelle [11,12], Schäfer [13], Kopejkin [14]); the structure of the radiation field
(work of Bonnor [15], Thorne [16], Blanchet and Damour [17]), and, more re-
cently, accurate post-Newtonian wave generation formalisms [18–22].
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To the lowest, Newtonian order, the wave-generation formalism is called the
quadrupole formalism, because as a consequence of the equality of the inertial
and gravitational mass of all bodies the dominant radiating moment of any
system is the (mass-type) quadrupole, which simply is at this approximation
the standard Newtonian quadrupole moment. We are very much confident in
using the theoretical framework of the post-Newtonian approximation because,
marvellously enough, the framework of the Newtonian, quadrupole formalism
has been checked by astronomical observations.

In fact, there are two observational tests of the validity of the quadrupole
formalism. The first test concerns the famous Hulse–Taylor binary pulsar whose
decrease of the orbital period Pb by gravitational radiation is predicted from the
quadrupole formula to be [23–26]

Ṗb = −192π
5c5

(
2πG
Pb

)5/3
MpMc

(Mp +Mc)1/3
1 + 73

24e
2 + 37

96e
4

(1− e2)7/2
, (1)

where Mp and Mc are the pulsar and companion masses, e is the orbit eccen-
tricity, and G, c are the universal gravitational constant and the speed of light.
Numerically, one finds Ṗb = −2.4×10−12 sec/sec, in excellent agreement (0.35%
precision) with the observations by Taylor et al. [27,28]. The second test con-
cerns the so-called cataclysmic variables. There we have binary systems in which
a star filling its Roche lobe (the “secondary” with mass M2) transfers mass onto
a more massive white dwarf (the “primary” with mass M1 > M2). From the for-
mula for the angular momentum in Newtonian theory J = GM1M2(a/GM)1/2

(where M = M1+M2), we deduce the secular evolution of the orbital semi-major
radius a (whatever may be the mechanism for the variation of J),

ȧ

a
=

2J̇
J
− 2Ṁ2

M2

(
1− M2

M1

)
, (2)

where Ṁ2 is the rate at which the secondary transfers mass to the primary
(Ṁ2 < 0). Since M1 > M2, the mass transfer tends to increase the radius a
of the orbit, hence to increase the radius of the secondary’s Roche lobe, and,
thus, to stop the mass transfer. Therefore a long lived mass transfer is possible
only if the system looses angular momentum to compensate for the increase of
a. For cataclismic binaries with periods longer than about two hours, the loss of
angular momentum is explained by standard astrophysical theory (interaction
between the magnetic field and the stellar wind of the secondary). But for short-
period binaries, with period less than about two hours, the only way to explain
the loss of angular momentum is to invoke gravitational radiation. Now, from
the quadrupole formula, we have(

J̇

J

)
GW

= −32G3

5c5
M1M2M

a4
. (3)

Inserting this into (2) one can then predict what should be Ṁ2 in order that
ȧ/a ∼ 0, and the result is in good agreement with the mass transfer measured
from the X-rays observations of cataclysmic binaries.
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Another important aspect of the theory of gravitational radiation, with ob-
vious implications in astronomy, is the interaction of the gravitational wave
field with photons. In this article we present the results of a thorough investi-
gation of light propagation in the gravitational wave field generated by some
isolated system. Our motivation is that electromagnetic waves are still the main
carrier of astrophysically important information from very remote domains of
our universe. Also, the operation of interferometric gravitational wave detec-
tors and other techniques used for making experiments in gravitational physics
(lunar laser ranging, very long baseline interferometry, pulsar timing, Doppler
tracking, etc.) are fully based on the degree of our understanding of how light
propagates in variable, time-dependent gravitational fields generated by various
celestial bodies. Although quite a lot of work has been done on this subject (see,
for example, [29]-[36]) a real progress and much deeper insight into the nature
of the problem has been achieved only recently [37]-[39]. The main advantage
of the integration technique which has been developed for finding the light-ray
trajectory perturbed by the gravitational field is its account for the important
physical property of gravitational radiation, namely, its retardation character.
Previous authors, apart from Damour and Esposito-Farèse [40], accounted for the
retardation of the gravitational field only in form of plane gravitational waves.
Hence, effects produced in the near and induction zones of isolated astronom-
ical sources emitting waves could not be treated in full detail. As a particular
example of importance of such effects we note the problem of detection of grav-
itational waves created by g-modes of the Sun. The space interferometer LISA
will be able to detect those waves. However, the problem is that LISA will fly
in the induction zone of the emission process of these gravitational waves and,
hence, a much more complete theoretical analysis of the working of the detector
is needed. The approximation of a plane gravitational wave for the description
of the detection procedure is definitely not sufficient. The other example could
be effects caused by the time-dependent gravitational field of the ensemble of
binary stars in our galaxy. Timing of high-stable millisecond pulsars might be a
tool for the detection of stochastic effects produced by that field [41].

2 Wave generation from Isolated Sources

2.1 Einstein Field Equations

The gravitational field is described in general relativity solely by the metric
tensor gµν (and its inverse gµν). It is generated by the stress-energy tensor of
the matter fields Tµν via the second-order differential equations

Rµν − 1
2
gµνR =

8πG
c4

Tµν , (4)

where Rµν and R = gρσR
ρσ denote, respectively, the Ricci tensor and the Ricci

scalar. We assume that the matter tensor Tµν corresponds to an isolated source,
i.e. Tµν has a spatially compact support with maximal radius a, and that the
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internal gravity of the source is weak in the sense that its mass M satisfies
GM � ac2. Within these conditions it is appropriate to write the metric gµν in
the form of a small deformation of the flat metric ηµν = diag(−1, 1, 1, 1). We pose
hµν =

√−ggµν−ηµν (g = determinant of gµν) and assume that each component
of hµν is numerically small: |hµν | � 1. We lower and raise all indices of our
metric perturbation hµν with the flat metric; for instance, hµν = ηµρηνσh

ρσ and
h = ηρσhρσ. Then the field equations (4) can be re-written in terms of the metric
perturbation hµν by separating out a second-order linear operator acting on hµν ,
and the remaining part of the equations, which is at least quadratic in hµν and
its first and second derivatives, we conventionally set to the right side of the
equations together with the matter tensor. This yields

� hµν − ∂µHν − ∂νHµ + ηµν∂ρH
ρ =

16πG
c4

τµν , (5)

where � = �η denotes the flat d’Alembertian operator and where Hµ ≡ ∂νh
µν ;

on the right side of the equation we have put

τµν = (−g) Tµν +
c4

16πG
Λµν , (6)

which represents the total stress-energy distribution of both the matter fields
– first term in (6) – and the gravitational field itself – second term involving
the non-linear gravitational source Λµν = O(h2) (note that τµν transforms as a
Minkowskian tensor under Lorentz transformations). The divergence of the left
side of (6) is identically zero by virtue of the Bianchi identities, therefore the
pseudo-tensor τµν is conserved in the ordinary sense,

∂ντ
µν = 0 , (7)

which is equivalent to the covariant conservation of the matter tensor, ∇νT
µν =

0. A gauge transformation hµν → hµν + ∂µξν + ∂νξµ − ηµν∂λξ
λ does not affect

the left side of (5), and consequently by solving for a vector ξµ the wave equation
�ξµ = −Hµ one can arrange that hµν satisfies the harmonic-gauge condition
∂νh

µν = 0. In this gauge the field equations (5) simply become

� hµν =
16πG
c4

τµν . (8)

We want now to formulate the condition that the source is really isolated,
i.e. it does not receive any radiation from other sources located far away, at
infinity. Recall that we can express any homogeneous regular solution of the
wave equation �hhom = 0 at a given field point in terms of the values of hhom at
some source points forming a surrounding surface at retarded times. This is the
Kirchhoff formula (see e.g. [42]), which reads in the case where the surrounding
surface is a sphere,

hhom(x′, t′) =
∫ ∫

dΩ

4π

[
∂

∂ρ
(ρhhom) +

∂

c∂t
(ρhhom)

]
(x, t), (9)
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where ρ = |x − x′| and t = t′ − ρ/c. To formulate the no-incoming radiation
condition we say that there should be no such homogeneous regular solutions
hhom (since they correspond physically to waves propagating from sources at
infinity). Taking the limit r → +∞ with t+ r/c= const. in Kirchhoff’s formula,
we then arrive at the physical conditions that

lim
r→+∞

t+ r
c=const.

[
∂

∂r
(rhµν) +

∂

c∂t
(rhµν)

]
(x, t) = 0 , (10)

and that r∂λh
µν should be bounded in this limit. The no-incoming radiation

condition (10) is thus imposed at (Minkowskian) past null infinity J− in a
conformally rescaled space-time diagram.

2.2 Multipole Expansion in Linearized Gravity

For the rest of this Section (and also in Section 5) we shall restrict ourselves to
the case of linearized gravity, defined in particular by the neglect of the non-
linear gravitational source term Λµν , for which the field equations in harmonic
gauge ∂νh

µν = 0 read
� hµν =

16πG
c4

Tµν . (11)

Within the linearized approximation the matter stress-energy tensor is diver-
genceless: ∂νTµν = 0. Therefore the linearized approximation is inconsistent as
regards the motion of the matter source, which in this approximation stays un-
affected by the gravitational field. However this approximation is quite adequate
for describing the generation of waves by a given source (for instance acted on
by non-gravitational forces). From the no-incoming radiation condition (10), we
find that the unique solution of (11) is the retarded one:

hµν(x, t) = −4G
c4

∫
d3x′

|x− x′| T
µν(x′, t− 1

c
|x− x′|) . (12)

Since we are being interested in the wave-generation problem, we choose the
field point outside the source, that is r = |x| > a (with the origin of the spatial
coordinates at the center of the ball with radius a, so a > |x′|), and we decompose
in that region hµν into “multipole moments”. The straightforward way to do this
is to employ the standard Taylor formula for the formal limit x′ → 0,

T (x′, t− |x− x′|/c)
|x− x′| =

+∞∑
l=0

(−)l
l!

x′L∂L

[
T (x′, t− r/c)

r

]
. (13)

Notice the short-hand notation L = i1i2 · · · il for a multi-index with l indices, as
well as x′L = x′L = x′i1x′i2 · · ·x′il , ∂L = ∂i1∂i2 · · · ∂il where ∂i = ∂/∂xi. From
this Taylor expansion we immediately arrive at the following expression for the
multipole decomposition of the metric perturbation,

M(hµν)(x, t) = −4G
c4

+∞∑
l=0

(−)l
l!

∂L

[
1
r
Hµν

L (t− r

c
)
]

, (14)
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where the “multipole moments” depend on the retarded time u ≡ t − r/c and
are given by

Hµν
L (u) =

∫
d3x′x′LT

µν(x′, u) , (15)

In (14) we employ the notationM to distinguish the multipole expansionM(h)
from h itself. Of course, we have numerically M(h) = h outside the source,
however inside the source M(h) and h will differ from each other; indeed h is
a smooth solution of the equations (12) while M(h) satisfies �M(h) = 0 and
becomes infinite when r → 0 [as it is clear from (14)]. In Section 4, dealing with
the general case of the non-linear theory, we shall prefer to use the multipole
expansion in terms of symmetric and trace-free (STF) multipole moments. In
the present case it is simpler to use the non-STF moments Hµν

L . A systematic
investigation of the STF multipole expansion in linearized gravity can be found
in [43].

Applying the (linearized) conservation law ∂νT
µν = 0 we easily find cer-

tain physical evolution equations (and conservation laws) to be satisfied by the
multipole moments (15). Making use of the Gauss theorem to discard spatial
divergences of compact-support terms we successively obtain (with (n) referring
to n time-derivatives)

1
c

(1)

Hµ0
L = lHµ(il

L−1) , (16)

1
c

(2)

H00
L = l(l − 1)H(ilil−1

L−2) , (17)

where the round brackets around spatial indices denote the symmetrization (and
where L − 1 = i1 · · · il−1; L − 2 = i1 · · · il−2). As a consequence of (16) we see
that the anti-symmetric part of Hi0

j in the indices ij is constant. A more general
consequence is

1
c
εijk

(1)

Hj0
kL−1= (l − 1)εijkHj(il−1

L−2)k . (18)

In the case of the lowest-order (l = 0 and l = 1) multipole moments the right
sides vanish, and therefore these equations represent the conservation laws for
the corresponding moments. Over all we find ten conservation laws, one for the
mass-type monopole or total mass M , three for the mass-type dipole or center
of mass position Xi (times M), three for the time derivative of the mass dipole
or linear momentum Pi, and three for the current-type dipole or total angular
momentum Si. Specifically, we define

M ≡ 1
c2
H00 =

∫
d3x

T 00

c2
, (19)

Pi ≡ 1
c
H0i =

∫
d3x

T 0i

c
, (20)

Si ≡ 1
c
εijkH0k

j = εijk

∫
d3x xj

T 0k

c
, (21)
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MXi ≡ 1
c2
H00

i =
∫

d3x xi
T 00

c2
. (22)

Then, from (16)-(18), we have

Ṁ = 0, Ṗi = 0, Ṡi = 0, and Ẋi =
Pi

M
. (23)

3 The Quadrupole Moment Formalism

3.1 Multipole Expansion in the Far Region

We analyze the gravitational field in the far-zone of the source, in which we
perform the expansion of the multipolar expansionM(hµν) when r → +∞ with
t− r/c =const (Minkowskian future null infinity J +). To leading order 1/r the
formula (14) yields

M(hµν) = − 4G
c4r

+∞∑
l=0

nL
cll!

(l)

Hµν
L (u) +O

(
1
r2

)
, (24)

[where (l) represents the lth time-derivative and where nL ≡ nL = ni1ni2 · · ·nil
with ni = xi/r]. Because of the powers of 1/c in front of each multipolar piece,
it is clear that the far-zone expansion of M(h) is especially useful when the
numerical value of each term of the formula (24) really scales with the factor
1/cl in front of it. This will be the case when the typical velocities of the particles
composing the system are small with respect to the speed of light, v/c ≡ ε� 1,
or, equivalently, when the maximal radius a of the system is much smaller than
the wavelength λ of the emitted gravitational radiation (λ = cP where P is
the typical period of the internal motion). In particular, this “slow motion”
assumption is always realized in the case of a self-gravitating system with weak
internal gravity, for which we have

ε ≡ v

c
∼ a

λ
∼
√

GM

c2a
� 1 . (25)

Thus, for slowly-moving systems we can retain only the first few terms in
the multipolar-post-Newtonian expansion (24). Let us restrict ourselves to the
terms

h00 = − 4G
c4r

{
H00 +

na
c

(1)

H00
a +

nab
2c2

(2)

H00
ab

}
, (26)

h0i = − 4G
c4r

{
H0i +

na
c

(1)

H0i
a

}
, (27)

hij = − 4G
c4r

{Hij
}

. (28)

For easier notation we do not indicate the multipole expansion M, nor the
neglected O(1/r2) in the distance to the source. Using the conservation laws
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(16)-(17) we can easily re-express the latter expressions in terms of the total
mass M , total linear-momentum Pi, and the Newtonian quadrupole moment

Qij ≡ 1
c2
H00

ij =
∫

d3x
T 00

c2
xixj . (29)

Since M and Pi are conserved they do not participate to the radiation field which
is therefore dominantly quadrupolar. Restoring the neglected post-Newtonian
error terms we obtain

h00 = − 4G
c2r

{
M +

na
c
Pa +

nab
2c2

(2)
Qab (u) +O

(
ε3
)}

, (30)

h0i = − 4G
c3r

{
Pi +

na
2c

(2)
Qai (u) +O

(
ε2
)}

, (31)

hij = − 4G
c4r

{
1
2

(2)
Q ij (u) +O (ε)

}
. (32)

Note that the contribution of the angular momentum Si appears only at the sub-
dominant order O(1/r2) [see for instance (78) below]. When acting on terms of
order 1/r in the distance like in (30)-(32) the derivative ∂ν is proportional to the
(Minkowskian) null vector kν = (−1,n); namely ∂ν = −kν∂0 + O(1/r2). Using
this, the harmonic gauge condition ∂νh

µν = 0 reads

kν
(1)
hµν= O

(
1
r2

)
(33)

which is checked directly to be satisfied by the expressions (30)-(32).

3.2 The Far-Field Quadrupole Formula

Using the gauge freedom hµν → hµν +∂µξν +∂νξµ−ηµν∂λξ
λ, we apply a gauge

transformation to what is called the transverse-traceless (TT) gauge. Namely we
pose

ξ0 =
G

2rc3

[
−nab

(2)
Qab −

(2)
Qaa

]
, (34)

ξi =
G

2rc3

[
niab

(2)
Qab +ni

(2)
Qaa −4na

(2)
Q ia

]
. (35)

The new metric in TT coordinates, say hTTµν (where we lower indices with the
flat metric), is straightforwardly seen to involve in its 00 and 0i components only
the static contributions of the mass monopole and dipoles, namely

hTT00 = −4GM

c2r

(
1 +

na
c
Ẋa

)
, hTT0i = −4GPi

c3r
. (36)
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In the TT gauge the only radiating components of the field are the spatial ones,
ij, and we obtain

hTTij = − 2G
c4r

Pijab(n)
{
(2)
Iab (u) +O (ε)

}
+O

(
1
r2

)
. (37)

The latter equation is known as the far-field quadrupole equation. The TT pro-
jection operator is defined by Pijab = PiaPjb − 1

2PijPab, where Pij = δij − ninj .
This is a projector: namely PijklPklab = Pijab, onto the plane orthogonal to n:
thus for instance, niPijab = 0; and it is trace free: Pijabδab = 0, so we have
substituted in (37) the trace free part of the quadrupole moment Qab, i.e.

Iij = Qij − δij
3

Qaa +O
(
ε2
)
. (38)

We have added a remainder O(ε2) to indicate the post-Newtonian corrections in
the source moment IL computed in Section 4 [note that the remainder in (37)
is only O(ε)].

As we see all the physical properties of the gravitational wave are contained
into the TT projection (37). As a consequence, the effects of the wave on matter
fields are transverse: the motion of matter induced by the wave takes place only
in the plane orthogonal to the propagation of the wave. Furthermore, from the
trace-less character of the wave we see there can be only two independent compo-
nents or polarization states. We introduce two polarization vectors, p and q, in
the plane orthogonal to the direction of propagation n, forming an orthonormal
right-handed triad. In terms of these polarization vectors the projector onto the
transverse plane reads Pij = pipj+qiqj . The two polarization states (customarily
referred to as the “plus” and “cross” polarizations) are defined by

h+ =
pipj − qiqj

2
hTTij , h× =

piqj + pjqi
2

hTTij . (39)

Until very recently all expectations was that any astrophysical (slowly-
moving) source would emit gravitational radiation according to (at least dom-
inantly) the quadrupole formula (37), involving the mass-type quadrupole mo-
ment Iij . For instance the waves from the binary pulsar obey this formula. How-
ever, it has been realized by Andersson [44] and Friedman and Morsink [45] that
in the case of the secular instability of the r-modes (rotation, or Rossby modes)
of isolated newly-born neutron stars, the gravitational radiation is dominated by
the variation of the current-type quadrupole moment Jij . Here we give, without
proof, the formula analogous to (37) but for the current quadrupole:

hTTij|current =
8G
3c5r

Pijab(n) εacd nc
(2)
Jbd (u) , (40)

where the (trace-free) current quadrupole moment is given by

Jij = εab(i

∫
d3x xj)xa

T 0b

c
+O

(
ε2
)
. (41)
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It could be, rather ironically, that the first direct detection of gravitational waves
would follow the formula (40) rather than the classic formula (37) appearing in
all text-books such as [8].

3.3 Energy Balance Equation and Radiation Reaction

The stress-energy pseudo-tensor of all matter and gravitational fields (in har-
monic coordinates) τµν is defined by (6). Now, for gravitational waves propa-
gating in vacuum at large distances from their sources (in regions where the
waves are almost planar), it is appropriate to define the stress-energy tensor of
the waves as the gravitational source term [involving Λµν(h)] in the definition of
τµν , in which hµν is replaced by the far-field metric (37). Since the expression of
the metric is valid up to fractional terms O(1/r2) in the distance, and since Λµν

is at least quadratic in h, the stress-energy tensor of gravitational waves will be
valid up to O(1/r3). Thus, we define, in the far-zone,

Tµν
GW =

c4

16πG
Λµν +O

(
1
r3

)
. (42)

Now to quadratic order Λµν is a complicated sum of terms like h∂∂h + ∂h∂h.
But when using (33) together with the fact that k2 = 0, this sum simplifies
drastically and we end up with [still neglecting O(1/r3)]

Tµν
GW =

c2

32πG
kµkν

(1)

hTTij

(1)

hTTij =
c2

16πG
kµkν

[
(
(1)
h+)2 + (

(1)
h×)2

]
. (43)

The second form is obtained from the inverse of (39): hTTij = (pipj − qiqj)h+ +
(piqj + pjqi)h×. The expression (43) takes the classic form σ kµkν of the stress-
energy tensor for a swarm of massless particles (gravitons) moving with the speed
of light. Notice from (43) that the energy density of waves is positive definite.
In the general case where we do not neglect the terms O(1/r3) the previous
expressions of Tµν

GW are still valid, but provided that one performs a suitable
average over several gravitational wavelengths (see [8]). For quadrupole waves,
substituting the quadrupole formula (37), we get

Tµν
GW =

G

8πr2c4
kµkνPijkl(n)

(3)
I ij

(3)
I kl . (44)

We can integrate the conservation law ∂ντ
µν = 0 over the usual three-

dimensional space (volume element d3x), and use the Gauss theorem to obtain a
flux of Tµν

GW through a surface at infinity (exterior surface element dSi), so that

d

dt

∫
d3x τµ0 = −c

∫
dSi T

µi
GW . (45)

We consider the µ = 0 component of this law, substitute for Tµν
GW the expression

(44) at the quadrupole approximation, perform the angular integration assuming
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for simplicity a coordinate sphere at infinity (i.e. dSi = r2nidΩ), and obtain the
famous Einstein (mass-type) quadrupole formula

dE

dt
= − G

5c5

{
(3)
I ij

(3)
I ij +O

(
ε2
)}

, (46)

where E =
∫
d3x τ00 represents the energy (matter + gravitation) of the source,

and where we re-installed the correct post-Newtonian remainder O(ε2). Without
proof we give also the formula corresponding to the current-type quadrupole
moment, (

dE

dt

)
|current

= − 16G
45c7

(3)
J ij

(3)
J ij , (47)

where the current quadrupole moment is defined by (41).
Interestingly, we can treat the decrease of the energy as the result of the back-

action of a radiative force (cf. [46]). We operate by parts the time-derivatives in
(46) so as to obtain

d

dt

(
E +

δE5

c5

)
= − G

5c5
(1)
I ij

(5)
I ij (48)

where we put on the left side a term in the form of a total time-derivative,
representing a correction of order 1/c5 to the energy E, given by

δE5

c5
=

G

5c5

[
(3)
I ij

(2)
I ij −

(4)
I ij

(1)
I ij

]
. (49)

Now, after a time much longer than the characteristic period of the source (for
definiteness one can consider a quasi-periodic source or perform a suitable aver-
age; see e.g. [47]), the contribution due to the correcting term (49) will become
negligible as compared to the right hand side of (48). Therefore, in the long
term, we can ignore this term and finally, the equation (48) can be re-written
equivalently in a form where the energy loss in the source is the result of the
work of a radiation reaction force Freac, namely

dE

dt
= −

∫
d3x Freac · v (50)

where

F i
reac(t,x) =

2G
5c5

ρ xj
(5)
I ij (t) , ρ ≡ T 00/c2 . (51)

The equation (50)-(51) is called the radiation-reaction quadrupole formula; the
specific expression (51) of the radiation reaction force is called after Burke and
Thorne [6–8]. This force is to be interpreted as a small Newtonian-like force
superposed to the usual Newtonian force at the 2.5PN order (or ε5). Actually,
the Burke-Thorne radiation reaction force is valid only in a special gauge. That
is, only in a special gauge, differing for instance from the harmonic or ADM
gauges, does the source equation of motion involve at 2.5PN order the correcting
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force (50)-(51). (See [48] for a discussion of various expressions of the radiation-
reaction force in different gauges.) Notice that the reaction force (51) contains
time derivatives up to the fifth order inclusively. In practice, for implementation
in numerical codes, high time-derivatives have the tendency of decreasing the
precision of a numerical computation, and therefore it is advantageous to choose
other expressions of the reaction force for implementation in numerical codes
[49,50]. On the other hand, the order of second, third, and higher time-derivatives
can be reduced by making use of the Newtonian equations of motion of the matter
source. Subsequent implication of such a form of the radiation reaction in binary
systems leads, for example, to the theoretical prediction of the rate of orbital
decay shown in (1).

4 Post-Newtonian Gravitational Radiation

4.1 The Multipole Moments in the Post-Newtonian Approximation

In Section 2 we presented the formula for the multipole expansion of the field
outside the source in linearized gravity. In the present section let us present,
without proof, the corresponding formula in the full non-linear theory, i.e. when
the Einstein field equations (8) are solved taking into account the gravitational
source term Λµν . The formula will be valid whenever the post-Newtonian ex-
pansion is valid, i.e. when (25) holds. Under this assumption the field in the
near-zone of a slowly-moving source can be expanded in non-analytic (involving
logarithms) series of 1/c [17]. The general structure of the expansion is

h
µν
(t,x, c) =

∑
p,q

(ln c)q

cp
hµνpq (t,x) , (52)

where hµνpq are the functional coefficients of the expansion (p, q = integers, in-
cluding the zero). The general multipole expansion of the metric field M(h) is
found by requiring that when re-developed in the near-zone in the limit of the
parameter r/c → 0 (which is equivalent with the formal re-expansion in the
limit c → ∞) it matches with the previous post-Newtonian expansion (52) in
the sense of the mathematical techniques of matched asymptotic expansions, i.e.

M(h) =M(h) . (53)

It is worthwhile noting that the equality (53) should be true in the sense of formal
series, i.e. term by term in each coefficient after both sides of the equation are
re-arranged with respect to the same expansion parameter.

We find [21,51] that the multipole expansion generalizing (14) to the full
theory is composed of two terms,

M(hµν) = finite part�−1R [M(Λµν)]− 4G
c4

+∞∑
l=0

(−)l
l!

∂L

{
1
r
Hµν

L (t− r/c)
}

,

(54)
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where �−1R is the inverse flat space-time retarded operator. Herein, the first term
is a particular solution of the Einstein field equations outside the matter compact
support, i.e. it satisfies �hµνpart = Λµν , and the second term is a retarded solution
of the source-free (homogeneous) wave equation, i.e. �hµνhom = 0. The “multipole
moments” parametrizing this homogeneous solution are given explicitly by an
expression similar to (15),

Hµν
L (u) = finite part

∫
d3x xL τµν(x, u) , (55)

but involving in place of the matter stress-energy tensor Tµν the post-Newtonian
expansion τµν , in the sense of (52), of the total (matter+gravitation) pseudo-
tensor τµν defined by (6). Both terms in (54) involve an operation of taking
the finite part. This finite part can be defined precisely by means of an analytic
continuation (see [51] for details), but in fact it is basically equivalent to taking
the finite part of a divergent integral in the sense of Hadamard [52]. Notice in
particular that the finite part in the expression of the multipole moments (55)
deals with the behaviour of the integral at infinity: r → ∞ (without the finite
part the integral would be divergent because of the factor xL ∼ rl in the inte-
grand and the fact that the pseudo-tensor τµν is not of compact support). One
can show that the multipole expansion (54)-(55) is equivalent with a different
one proposed recently by Will and Wiseman [22].

Generally, it is more useful (for applications) to express the multipole ex-
pansion not in terms of the moments (55), but in terms of symmetric trace-free
(STF) moments. We denote the STF projection with a hat, x̂L ≡ STF(xL), so
that, for instance, x̂ij = xixj − 1

3δijx
2. Then it can be shown that the STF

multipole expansion equivalent to (54)-(55) reads,

M(hµν) = finite part�−1R [M(Λµν)]− 4G
c4

+∞∑
l=0

(−)l
l!

∂L

{
1
r
Fµν
L (t− r/c)

}
,

(56)

where the parametrizing multipole moments are a bit more complicated,

Fµν
L (u) = finite part

∫
d3x x̂L

∫ 1

−1
dz δl(z)τµν(x, u+ z|x|/c) . (57)

With respect to the non-tracefree expression (55) this involves an extra integra-
tion over the variable z, with weighting function

δl(z) =
(2l + 1)!!
2l+1l!

(1− z2)l ,
∫ 1

−1
dzδl(z) = 1 , lim

l→+∞
δl(z) = δ(z) . (58)

The results (56)-(58) permit us to define a very convenient notion of the
source multipole moments. Quite naturally, these are constructed from the ten
components of Fµν

L (u). First of all, we reduce the number of independent com-
ponents to only six by using the four relations given by the harmonic gauge
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condition ∂νh
µν = 0. Next we apply standard STF techniques (see [18,43,51] for

details), and, in this way, we are able to define six STF-irreducible multipole
moments, denoted IL, JL,WL, XL, YL, ZL, which are given by explicit integrals
extending over the post-Newtonian-expanded pseudo-tensor τµν like in (57). All
of the moments IL, JL, · · · , ZL are referred to as the moments of the source;
however notice that, among them, only the moments IL (mass-type moment)
and JL (current-type) play a physical role at the linearized level. The other four
moments WL, XL, YL, ZL simply parametrize a linear gauge transformation and
can often be omitted from the consideration. Only at the order 2.5PN or ε5 do
they start playing a physical role. The complete formulas for the moments IL, JL
are [51]

IL(u) = finite part
∫

d3x
∫ 1

−1
dz

{
δlx̂LΣ − 4(2l + 1)

c2(l + 1)(2l + 3)
δl+1x̂iL∂tΣi

+
2(2l + 1)

c4(l + 1)(l + 2)(2l + 5)
δl+2x̂ijL∂

2
tΣij

}
(x, u+ z|x|/c) , (59)

JL(u) = finite part
∫

d3x
∫ 1

−1
dz εab<il

{
δlx̂L−1>aΣb

− 2l + 1
c2(l + 2)(2l + 3)

δl+1x̂L−1>ac∂tΣbc

}
(x, u+ z|x|/c) . (60)

In these expressions, <> refers to the STF projection, and we have posed

Σ ≡ τ00 + τ ii

c2
(where τ ii ≡ δijτ

ij) , Σi ≡ τ0i

c
, Σij ≡ τ ij . (61)

The moments IL, JL given by these formulas are valid formally up to any post-
Newtonian order. They constitute the generalization in the non-linear theory of
the Newtonian moments introduced earlier in (38) and (41).

In order to apply usefully these moments to a given problem, one must find
the explicit expressions of the moments at a given post-Newtonian order by
inserting into them the components of the pseudo-tensor τµν obtained from an
explicit post-Newtonian algorithm. Without entering into details, we find for
instance that at the 1PN order the mass-type source moment IL is given (rather
remarquably) by a simple compact-support formula [17,21], on which we can,
therefore, remove the finite part prescription:

IL =
∫

d3x
{
x̂Lσ +

|x|2x̂L
2c2(2l + 3)

∂2t σ −
4(2l + 1)x̂iL

c2(l + 1)(2l + 3)
∂tσi

}
+O

(
ε4
)
. (62)

We denote the compact-support parts of the source scalar and vector densities
in (61) by

σ ≡ T 00 + T ii

c2
, σi ≡ T 0i

c
. (63)

See Blanchet and Schäfer [53] for application of the formula (62) to the compu-
tation of the relativistic correction in the Ṗb of a binary pulsar [given to lowest
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order by (1)]. On the other hand, Damour, Soffel, and Xu [54] (extending previ-
ous work of Brumberg and Kopeikin [55], [56]) used the formula in their study
of the Solar-system dynamics at 1PN order. The property of being of compact
support is a special feature of the 1PN mass-moment IL. To higher-order (2PN
and higher) the mass moment IL is intrinsically of non-compact support (see
its expression in [21]); hence the finite part prescription in the definition of the
moment IL plays a crucial role at 2PN. Similarly, starting already at 1PN order,
the current-moment JL is intrinsically of non-compact support [19,21].

In a linear theory, the source multipole moments coincide evidently with
the radiative multipole moments, defined as the coefficients of the multipole
expansion of the 1/r term in the distance to the source at retarded times t −
r/c =const. (this is evident from Section 2). However, in a non-linear theory
like general relativity, the source multipole moments interact with each other
in the exterior field through the non-linearities. This is clear from the presence
of the first term in (56), containing the gravitational source Λµν , and which
does contribute to the 1/r part of the metric at infinity. Therefore the source
multipole moments must be related to the radiative ones, the latter constituting
in this approach the actual observables of the field at infinity.

In the TT projection of the metric field one can define two sets of radiative
moments UL (mass-type) and VL (current-type). The definition of these moments
is that they parametrize the 1/r-term of the ij components of the metric in TT
gauge. Thus, extending the formula (37), the radiative moments are given by
the decomposition

hTTij =− 4G
c2r

Pijab

∑
l≥2

1
cll!

{
nL−2UabL−2 − 2l

c(l + 1)
ncL−2εcd(aVb)dL−2

}
+O

(
1
r2

)
.

(64)

The radiative moments UL, VL are related to the l-th time-derivatives of the
corresponding source moments. Let us give, without proof, the result of the
connection of the radiative moments to the source moments (59)-(60) to the order
ε3 (or 1.5PN) inclusively. To this order some non-linear “monopole-radiative l-
pole” interactions appear, which correspond physically to the scattering of the
l-pole wave on the static curvature induced by the total mass of the source (i.e.
the mass monopole M ≡ I) – an effect well known under the name of tail of
gravitational waves. We find [20,21]

UL(u) =
(2)
I L (u) +

2GM

c3

∫ +∞

0
dτ

(4)
I L (u− τ)

[
ln
( τ

2b

)
+ κl

]
+O

(
ε4
)
, (65)

VL(u) =
(2)
J L (u) +

2GM

c3

∫ +∞

0
dτ

(4)
J L (u− τ)

[
ln
( τ

2b

)
+ πl

]
+O

(
ε4
)
. (66)

The same expressions come out from the Will and Wiseman formalism [22].
Here, b is a normalization constant (essentially irrelevant since it corresponds to
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a choice of the origin of time in the far zone), and κl, πl are given by

κl =
2l2 + 5l + 4
l(l + 1)(l + 2)

+
l−2∑
k=1

1
k

, πl =
l − 1

l(l + 1)
+

l−1∑
k=1

1
k

. (67)

The first term in (65) relates essentially to the original quadrupole formula (see
(37)). From (65)-(66) one sees that the first non-linearity in the propagation
of the waves is at 1.5PN order with respect to the quadrupole formula. Thus,
with enough precision, one can replace in (65) the mass-type moment IL by its
compact-support expression that we computed in (62) [since the post-Newtonian
remainder in (62) is O(ε4)].

4.2 Post-Newtonian Radiation Reaction

Emission of gravitational radiation affects the equations of motion of an isolated
system dominantly at the 2.5PN order beyond the Newtonian acceleration. In a
suitable gauge the radiation-reaction force density at the 2.5PN order is given by
the quadrupole formula (51). In this Section we extend this quadrupole formula
to include the relativistic corrections up to the relative 1.5PN order, which means
the absolute 4PN order with respect to the Newtonian force. The method is to
compute the radiation reaction by means of the matching [in the sense of (53)]
of the post-Newtonian field to the exterior multipolar field. Indeed, recall that
the post-Newtonian field is valid only in the near zone, and, thus, only via a
matching can it incorporate information from the correct boundary condition,
viz the no-incoming radiation condition imposed at infinity by equation (10),
which specifies the braking character of gravitational radiation reaction.

To the relative 1.5PN order, and in a suitable gauge, it can be shown that
the reaction force derives from some “electromagnetic-like” scalar and vector
reaction potentials V reac and V reac

i . Explicitly we have [57]

V reac(x, t) = − G

5c5
xij

{
(5)
I ij (t) +

4GM

c3

∫ +∞

0
dτ ln

( τ

2b

) (7)
I ij (t− τ)

}
+

G

c7

[
1

189
xijk

(7)
I ijk (t)− 1

70
x2xij

(7)
I ij (t)

]
+O

(
ε9
)
, (68)

V reac
i (x, t) =

G

c5

[
1
21

x̂ijk
(6)
I jk (t)− 4

45
εijk xjm

(5)
J km (t)

]
+O

(
ε7
)
. (69)

The dominant term in the formula (68)-(69) is the standard Burke-Thorne re-
active scalar potential at 2.5PN order [compare (68) with (51)]. In this term,
consistently with the approximation, one must insert the 1PN expression of the
moment as given by (62). The Burke-Thorne term is of “odd”-parity-type as it
corresponds to an odd power of 1/c, and thus changes sign upon a time reversal
(or more precisely when we replace the retarded potentials by advanced ones).
Similarly is the next term in (68)-(69) is 3.5PN (i.e. ε7), involving both the
mass-quadrupole, mass-octupole and current-quadrupole moments (the term ε5
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in the vector potential V reac
i corresponds really to ε7 in the equations of mo-

tion). However, notice that the next term in the reaction scalar potential V reac,
at 4PN or ε8 order, belongs to the “even”-parity-type. Nevertheless this term is
really part of the radiation reaction for it is not invariant under a time rever-
sal, as is involves an integration over the “past” history of the source, so that
when changing the retarded potentials to advanced ones the integration range
would change to the whole “future”; hence, this term does not stay invariant. It
represents the contribution of tails in the radiation-reaction force, and is nicely
consistent, in the sense of energy conservation, with the tails in the far zone
[equation (65)]. For explicit computations of the back-reaction to 3.5PN order in
the case of point-mass binary systems see Iyer and Will [58,59], and Jaranowski
and Schäfer [60].

Using the matching (53) one finds that the near-zone post-Newtonian metric
(to 1.5PN relative order in both the “damping” and “conservative” effects) is
parametrized in this gauge by some generalized potentials

Vµ = �−1sym [−4πGσµ] + V reac
µ . (70)

The first term represents, to this post-Newtonian order, the conservative part of
the metric; it is of the normal “even”-parity-type and is given by the usual
symmetric integral (half-retarded plus half-advanced) of the source densities
σµ = (σ, σi) given by (63). The second term V reac

µ denotes the radiation-reaction
potentials (68)-(69). By inserting the metric parametrized by (70) into the equa-
tions of motion of the source (i.e. ∂ντµν = 0 ⇔ ∇νT

µν = 0), and considering
the integral of energy, we obtain the balance equation

dE

dt
=
∫

d3x
{
−σ∂tV reac +

4
c2

σj∂tV
reac
j

}
+O

(
ε9
)
. (71)

Here E denotes the energy of the source at the 1PN (or even 1.5PN) order.
Actually what we obtain is not E but some E + δE5/c

5 + δE7/c
7 like in (48).

Arguing as before we neglect these δE5 and δE7. Substituting now the expres-
sions (68)-(69) for the reactive potentials (and neglecting other δE’s) we get

dE

dt
= − G

5c5

{
(3)
I ij +

2GM

c3

∫ +∞

0
dτ ln

( τ

2b

) (5)
I ij (t− τ)

}2

− G

c7

[
1

189

(4)
I ijk

(4)
I ijk +

16
45

(3)
J ij

(3)
J ij

]
+O

(
ε9
)
, (72)

The right-side is exactly in agreement with the computation of the total flux
energy emitted in gravitational waves at infinity, which is computed making use
of the stress-energy tensor of gravitational waves (43). In particular we recover
in the brackets of the first term of (72) the third time-derivative of the radiative
moment Uij including its tail contribution. The difference with the standard
derivation of the flux is that instead of computing a surface integral at infinity
we have performed the computation completely within the source, using the local
source equations of motion.
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5 Light Propagation in Gravitational Fields
of Isolated Sources

5.1 General Solution of the Light Propagation Equation

We are going now to calculate in linearized approximation the propagation of
a light ray in the gravitational field of an isolated source at rest showing a
mass-monopole, a spin-dipole and a time-dependent mass-quadrupole moment.
In linearized approximation, the propagation equation for a particle (massless
or with mass) with space coordinates xi(t) reads

ẍi(t) =
1
2
g00,i − g0i,t − 1

2
g00,tẋ

i − gik,tẋ
k − (g0i,k − g0k,i) ẋk − (73)

g00,kẋ
kẋi −

(
gik,j − 1

2
gkj,i

)
ẋkẋj +

(
1
2
gkj,t − g0k,j

)
ẋkẋj ẋi ,

where the metric coefficients gµν = ηµν+fµν , in linear approximation, are related
with hµν from Sections 2–4 through fµν = −hµν + 1

2ηµνh. The dots denote
differentiation with respect to time t and c = 1 has been put for simplicity. In
the linear approximation scheme, the velocity ẋi appearing on the right-hand-
side of (73) can be treated as a constant vector. For massless particles (photons)
it has unit length, i.e. ẋiẋi = 1. In the following we use ẋi = ki in the right hand
side of (73).

The unperturbed motion of photons reads

xi(t) = xi0 + ki(t− t0) , (74)

where xi0 denotes the position of the photon at time of emission t0. For solving
the light propagation equation (73) it is very convenient to introduce the new
time parameter τ defined by τ = t− t∗, where t∗ denotes the time of the closest
approach of the photon to the source of the gravitational field. Then it holds

xi(τ) = ξi + kiτ , (75)

where ξi is the vector pointing from the position of the source to the position of
the photon at the closest approach. Its length is the impact parameter |ξ| = d.
Obviously, ξi and ki are orthogonal to each other in the euclidean sense, i.e.
ξiki = 0. Therefore, the length of xi, r = |x|, takes the simple form r =

√
τ2 + d2.

Introducing the derivatives ∂̂i = P̂ij∂/∂ξ
j and ∂̂τ = ∂/∂τ , where P̂ij = δij−kikj

is the projection operator onto the plane orthogonal to ki, allows the light-
propagation equation to be written as

ẍi(τ) =
1
2
kαkβ ∂̂ifαβ − ∂̂τ

(
kαfiα +

1
2
kif00 − 1

2
kikjkpfjp

)
, (76)

where the four-dimensional vector kα reads kα = (1, ki).
To get a complete overview of the influence of a gravitational wave, emit-

ted from an isolated source, on the propagation of light rays, we use the rep-
resentation of the metric coefficients (14) which is valid all-over in the space
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outside a domain which includes the matter source. Splitting fµν into a canon-
ical part f canµν which contains trace-free tensors only, and a gauge part, i.e.
fµν = f canµν + ∂µwν + ∂νwµ, we obtain in case of mass-monopole, spin-dipole,
and mass-quadrupole source moments (remember the source being at rest)

f can00 =
2M
r

+ ∂pq

[
Ipq(t− r)

r

]
, (77)

f can0i = −2εipqSpnq
r2

+ 2∂j

[
İij(t− r)

r

]
, (78)

f canij = δijf
can
00 +

2
r
Ïij(t− r) . (79)

Herein, for simplicity, we have put G = 1, and ∂i = ∂/∂xi. The mass M , spin
Si, and the quadrupole moment Iij of the source of gravitational waves are
given (in the Newtonian approximation) by the expressions (19), (21), and (38).
The explicit expressions for the gauge functions wµ relating f canµν with fµν are
important for general discussion of light propagation in the field of gravitational
waves emitted by the isolated source. However, for the sake of simplicity they
will be omitted. Their precise form can be found in [37].

The insertion of these expressions (77)-(79) into the equation (76) results in
the equation

ẍi(τ) =
[
2M

(
∂̂i − ki∂̂τ

)
− 2Sp

(
εipq∂̂qτ − kjεjpq∂̂iq

)]{1
r

}
(80)

+
(
∂̂ipq − ki∂̂pqτ + 2kp∂̂iqτ

){Ipq(t− r)
r

}
−2P̂ij ∂̂qτ

{
İjq(t− r)

r

}
−∂̂ττ

[
wi + ϕi − ki

(
w0 + ϕ0)] ,

where the vector ϕµ denotes terms which are of gauge type. The precise form of
ϕµ is not important here and can be found in [37].

The solution of equation (80), using the boundary conditions ẋi(−∞) = ki

and xi(τ0) = xi0 – emission point in space of the light ray at time τ0, reads

ẋi(τ) = ki + Ξ̇i(τ) , (81)
xi(τ) = xiN (τ) +Ξi(τ)−Ξi(τ0) , (82)

where xiN (τ) denotes the unperturbed trajectory (75). The relativistic pertur-
bation of the trajectory is given by

Ξ̇i(τ) =
(
2M∂̂i + 2Spkjεjpq∂̂iq

)
A(τ, ξ) + ∂̂ipqBpq(τ, ξ)− (83)(

2Mki + 2Spεipq∂̂q

){1
r

}
−
(
ki∂̂pq − 2kp∂̂iq

){Ipq(t− r)
r

}
− 2P̂ij ∂̂q

{
İjq(t− r)

r

}
−∂̂τ

[
wi + ϕi − ki

(
w0 + ϕ0)] ,
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Ξi(τ) =
(
2M∂̂i + 2Spkjεjpq∂̂iq

)
B(τ, ξ)−

(
2Mki + 2Spεipq∂̂q

)
A(τ, ξ) (84)

+ ∂̂ipqDpq(τ, ξ)−
(
ki∂̂pq − 2kp∂̂iq

)
Bpq(τ, ξ)− 2P̂ij ∂̂qCjq(τ, ξ)−

− wi(τ, ξ)− ϕi(τ, ξ) + ki
[
w0(τ, ξ) + ϕ0(τ, ξ)

]
,

whereby the scalar functions A and B and derivatives of the tensors Bij , Cij , Dij

are known fully explicitly. They are given by

A(τ, ξ) ≡
∫

dτ

r
=
∫

dτ√
d2 + τ2

= − ln
(√

d2 + τ2 − τ
)

, (85)

B(τ, ξ) ≡
∫

A(τ, ξ)dτ = −τ ln
(√

d2 + τ2 − τ
)
−
√

d2 + τ2 , (86)

∂̂kBij(τ, ξ) = (yr)−1 Iij(t− r)ξk , (87)

∂̂kCij(τ, ξ) = (yr)−1 İij(t− r)ξk , (88)

∂̂ijkDpq(τ, ξ) =
1
y

[(
P̂ ij+

ξiξj

yr

)
∂̂kBpq(τ, ξ) + P̂ jk∂̂iBpq(τ, ξ) + ξj ∂̂ikBpq(τ, ξ)

]
,

(89)

where the variable y = τ − √τ2 + d2 is the retarded time argument for the
photon which passes through the point of closest approach to the source of the
gravitational radiation at time t∗ = 0. More details concerning the method of
calculation of light ray trajectory in time dependent gravitational fields can be
found in [37,38].

5.2 Time Delay and Bending of Light

The time delay results in the form

t− t0 = |x− x0| − k ·Ξ(τ) + k ·Ξ(τ0) , (90)

or

t− t0 = |x− x0|+∆M (t, t0) +∆S(t, t0) +∆Q(t, t0) , (91)

where |x − x0| is the usual Euclidean distance between the points of emission,
x0, and reception, x, of the photon, ∆M is the classical Shapiro delay produced
by the (constant) spherically symmetric part of the gravitational field of the
deflector (see, e.g. [8]), ∆S is the Lense-Thirring or Kerr delay due to the (con-
stant) spin of the localized source of gravitational waves [39], and ∆Q describes
an additional delay caused by the time dependent quadrupole moment of the
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source [37]. Specifically we obtain

∆M = 2M ln
[

r + τ

r0 + τ0

]
, (92)

∆S = −2εijkkjSk∂̂i ln
[

r + τ

r0 + τ0

]
, (93)

∆Q = ∂̂ij [Bij(τ, ξ)−Bij(τ0, ξ)] + δQ(τ, ξ)− δQ(τ0, ξ) , (94)

where
δQ(τ, ξ) = ki

(
wi + ϕi

)− w0 − ϕ0 . (95)

Let us now denote by αi the dimensionless vector describing the total angle
of deflection of the light ray measured at the point of observation and calculated
with respect to vector ki given at past null infinity. It is defined according to the
relationship

αi(τ, ξ) = ki[k · Ξ̇(τ, ξ)]− Ξ̇i(τ, ξ) = − P̂ij Ξ̇j(τ, ξ) . (96)

For observers being far away from the source of the gravitational wave the
projection of the mass-quadrupole tensor of the source of gravitational radiation
onto the plane orthogonal to the propagation direction of the gravitational wave
is the crucial object which enters into the observable effects. It reads

ITTij =PijpqIpq=Iij+
1
2
(δij+ninj)npnq Ipq − (δipnjnq+δjpninq) Ipq , (97)

where again we denote ni = xi/r.
In the case of small impact parameter d (d/r0 � 1, d/r � 1) we respectively

obtain for the time delay and the angle of deflection

t− t0 − |x− x0| = −4ψ + 2M ln(4rr0) , (98)

αi = 4∂̂iψ , (99)

where ψ is the gravitational lens potential having the form

ψ =
[
M + εjpqk

pSq∂̂j +
1
2
ITTpq (t∗) ∂̂pq

]
ln d . (100)

(Notice that in this gravitational lens approximation ni = ki holds.) Remar-
quably, the gravitational lens potential does depend on the gravitational source
mass-quadrupole tensor only through its value at the time of closest approach.
Furthermore, the gravitational lens potential decays like 1/d2, i.e. it is not being
influenced by the wave part of the gravitational field [40,37].

A direct consequence of the time delay formula is the frequency shift formula
for a moving gravitational source

δν

ν
= 4

∂ψ

∂t∗
+ viαi , (101)
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where vi is the velocity of the observer. It is worthwhile noting that the ex-
pression (101) holds for the source of electromagnetic waves being at past null
infinity. An exhaustive treatment of the gravitational frequency shift for arbi-
trary locations of observer, source of light, and the source of gravitational waves
is rather complicated and has been done only recently in [38].

6 Detection of Gravitational Waves

In the asymptotic regime of a gravitational wave field, the time delay reads

∆Q(k; t, t0) =
kikj

1− cos θ

[
İTTij (t− r)

r
− İTTij (t0 − r0)

r0

]
, (102)

where θ is the angle between the receiver - (light) emitter and receiver - (grav-
itational wave) source direction (cos θ = −N iki) and where the assumption
|x − x0| � r has been made. Let us now apply the above formula to the time
delay in a Michelson interferometer. Obviously, in this case, r = r0 holds. For
simplicity we assume that the interferometer device is oriented orthogonal to
the propagation direction of the gravitational wave, i.e. N iki1 = N iki2, where
ki1 and ki2 denote the directions of the two interferometer arms which are taken
to be orthogonal (ki1k

i
2 = 0) and of equal length L. We also assume that the

light, emitted from the beam-splitter, is reflected once at the end mirrors. Fur-
thermore, the interferometer arms are to be oriented such that they coincide
with the main axes of the plus-polarization. Then the relative time delay of the
reflected light beams reads

∆Q(k1; t, t− 2L) =
ki1k

j
1

r0
[İTTij (t− r0)− İTTij (t− r0 − 2L)] . (103)

The multiplication of the relative time delay by the angular frequency of the laser
light, ω, which is treated as constant in the approximation under consideration,
results in the measurable phase shift at time t of ∆Φ(t) = 2ω∆Q(k1; t, t − 2L).
If we assume for the plus-component of the gravitational wave the expression
h+(t − r0) = A+ cos(ωgt), where ωg is the constant frequency of the wave and
A+ its constant amplitude, we obtain for the phase shift (cf. [61])

∆Φ(t) = 2A+
ω

ωg
sin(ωgL) cos[ωg(t− L)] . (104)

The maximal amplitude is achieved if the condition ωgL = π/2 holds. This yields

∆maxΦ(t) = 2A+
ω

ωg
sin(ωgt) . (105)

At the photo-diode the following photo-current results [62]

Iph(t) = Imin +
Imax − Imin

2
[1− cosφ(t)] , (106)
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where the phase φ(t) is composed out of the signal ∆Φ plus a modulation term
from Pockels cells, φm sin(ωmt), i.e.

φ(t) = ∆Φ(t) + φm sin(ωmt) . (107)

The approximate decomposition of the expression (106) into a dc (“direct cur-
rent” or non-alternate) part and a signal part reads Iph(t) = Idc + Iωm , where

Idc = Imin +
Ieff
2

[1− J0(φm) cos∆Φ(t)] , (108)

Iωm = IeffJ1(φm) sin∆Φ(t) sin(ωmt) , (109)

with Bessel functions J0 and J1; Ieff = Imax − Imin. Because of the smallness of
the gravitational phase shift we get

Idc = Imin +
Ieff
2

[1− J0(φm)] , (110)

Iωm
= IeffJ1(φm)∆Φ(t) sin(ωmt) . (111)

Using the equation (105), the latter equation can be written

Iωm = IeffJ1(φm)A+
ω

ωg

{
cos [(ωm − ωg)t]− cos [(ωm + ωg)t]

}
. (112)

In this side-band form, the signal from the gravitational wave is being detected.
For more details we refer to [61].
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49. L. Blanchet, T. Damour, and G. Schäfer: Mon. Not. R. Astr. Soc. 242, 289 (1990).
50. L. Rezzolla, M. Shibata, H. Asada, T.W. Baumgarte, and S.L. Shapiro: Astrophys.

J. 525, 935 (1999).
51. L. Blanchet: Class. Quantum Grav. 15, 1971 (1998).
52. J. Hadamard: Le problème de Cauchy et les équations aux dérivées partielles hy-
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60. P. Jaranowski and G. Schäfer: Phys. Rev. D 55, 4712 (1997).
61. P.R. Saulson: Fundamentals of Interferometric Gravitational Wave Detection

(World Scientific, Singapore 1994).
62. D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, and A.
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Relic Gravitational Waves and Their Detection
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Abstract. The range of expected amplitudes and spectral slopes of relic (squeezed)
gravitational waves, predicted by theory and partially supported by observations, is
within the reach of sensitive gravity–wave detectors. In the most favorable case, the
detection of relic gravitational waves can be achieved by the cross–correlation of outputs
of the initial laser interferometers in LIGO, VIRGO, GEO600. In the more realistic
case, the sensitivity of advanced ground–based and space–based laser interferometers
will be needed. The specific statistical signature of relic gravitational waves, associated
with the phenomenon of squeezing, is a potential reserve for further improvement of
the signal to noise ratio.

1 Introduction

It is appropriate and timely to discuss the detection of relic gravitatational
waves at the experimental meeting like this one. We are in the situation when
the advanced laser interferometers, currently under construction or in a design
phase, can make the dream of detecting relic gravitons a reality. The detection
of relic gravitational waves is the only way to learn about the evolution of the
very early Universe, up to the limits of Planck era and Big Bang.

The existence of relic gravitational waves is a consequence of quite general
assumptions. Essentially, we rely only on the validity of general relativity and of
basic principles of quantum field theory. The strong variable gravitational field of
the early Universe amplifies the inevitable zero–point quantum oscillations of the
gravitational waves and produces a stochastic background of relic gravitational
waves measurable today [1]. It is important to appreciate the fundamental and
unavoidable nature of this mechanism. Other physical processes can also generate
stochastic backgrounds of gravitational waves. But those processes either involve
many additional hypotheses, which may turn out to be not true, or produce a
gravitational wave background (like the one from binary stars in the Galaxy)
which should be treated as an unwanted noise rather than a useful and interesting
signal. The scientific importance of detecting relic gravitational waves has been
stressed on several occasions (see, for example, [2]–[4]).

The central notion in the theory of relic gravitons is the phenomenon of
superadiabatic (parametric) amplification. The roots of this phenomenon are
known in classical physics, and we will remind ourselves of its basic features.
As every wave–like process, gravitational waves use the concept of a harmonic
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oscillator. The fundamental equation for a free harmonic oscillator is

q̈ + ω2q = 0, (1)

where q can be a displacement of a mechanical pendulum or a time–dependent
amplitude of a mode of the physical field. The energy of the oscillator can be
changed by an acting force or, alternatively, by a parametric influence, that is,
when a parameter of the oscillator, for instance the length of a pendulum, is
being changed. In the first case, the fundamental equation takes the form

q̈ + ω2q = f(t), (2)

whereas in the second case we have

q̈ + ω2(t)q = 0. (3)

Eqs.(2) and (3) are profoundly different, both, mathematically and physically.
Let us concentrate on the parametric influence. We consider a pendulum of

length L oscillating in a constant gravitational field g. The unperturbed pen-
dulum oscillates with the constant frequency ω =

√
g/L. Fig.1a illustrates the

variation of the length of the pendulum L(t) by an external agent, shown by
alternating arrows. Since L(t) varies, the frequency of the oscillator does also
vary: ω(t) =

√
g/L(t). The variation L(t) does not need to be periodic, but can-

not be too slow (adiabatic) if the result of the process is going to be significant.
Otherwise, in the adiabatic regime of slow variations, the energy of the oscillator
E and its frequency ω do change slowly, but E/ω remains constant, so one can
say that the “number of quanta” E/�ω in the oscillator remains fixed. In other
words, for the creation of new “particles – excitations”, the characteristic time
of the variation should be comparable with the period of the oscillator and the
adiabatic behaviour should be violated. After some duration of the appropriate
parametric influence, the pendulum will oscillate at the original frequency, but
will have a significantly larger amplitude and energy than before. This is shown
in Fig.1b. Obviously, the energy of the oscillator has been increased at the ex-
pense of the external agent (pump field). For simplicity, we have considered a
familiar case, when the length of the pendulum varies, while the gravitational
acceleration g remains constant. Variation of g would represent a gravitational
parametric influence and would even be in closer analogy to what we will study
below.

A classical oscillator must have a non–zero initial amplitude for the amplifi-
cation mechanism to work. Otherwise, if the initial amplitude is zero, the final
amplitude will also be zero. Indeed, imagine the pendulum strictly at rest, hang-
ing stright down. Whatever the variation of its length is, it will not make the
pendulum to oscillate and gain energy. In contrast, a quantum oscillator does
not need to be excited from the very beginning. The oscillator can be initially
in its quantum–mechanical vacuum state. The inevitable zero–point quantum
oscillations are associated with the vacuum state energy 1

2�ω. One can imagine
a pendulum hanging straight down, but fluctuating with a tiny amplitude deter-
mined by the “half of the quantum in the mode”. In the classical picture, it is



Relic Gravitational Waves and Their Detection 169

a) b)

Fig. 1. Parametric amplification. a) variation of the length of the pendulum, b) in-
creased amplitude of oscillations.

this tiny amplitude of quantum–mechanical origin that is being parametrically
amplified.

The Schrödinger evolution of a quantum oscillator depends crucially on whe-
ther the oscillator is being excited parametrically or by a force. Consider the
phase diagram (q, p), where q is the displacement and p is the conjugate mo-
mentum. The vacuum state is described by the circle in the center (see Fig.2).
The mean values of q and p are zeros, but their variances (zero–point quantum
fluctuations) are not zeros and are equal to each other. Their numerical values
are represented by the circle in the center. Under the action of a force, the vac-
uum state evolves into a coherent state. The mean values of p and q increased,
but the variances are still equal and are described by the circle of the same
size as for the vacuum state. On the other hand, under a parametric influence,
the vacuum state evolves into a squeezed vacuum state. [For a recent review of
squeezed states see [5], for example, and references therein.] Its variances for the
conjugate variables q and p are significantly unequal and are described by an
ellipse. As a function of time, the ellipse rotates with respect to the origin of
the (q, p) diagram, and the numerical values of the variances oscillate, too. The
mean numbers of quanta in the two states, one of which is coherent and another
is squeezed vacuum, can be equal (similar to the coherent and squeezed states
shown in Fig. 2) but the statistical properties of these states are significantly
different. Among other things, the variance of the phase of the oscillator in a
squeezed vacuum state is very small (squeezed). Graphically, this is reflected in
the fact that the ellipse is very thin, so that that the uncertainty in the angle
between the horizontal axis and the orientation of the ellipse is very small. This
highly elongated ellipse can be regarded as a portrait of the gravitational wave
quantum state that is being inevitably generated by parametric amplification,
and which we will be dealing with below.

A wave–field is not a single oscillator, it depends on spatial coordinates and
on time and may have several independent components (polarization states).
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p
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coherent state

vacuum state

squeezed
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Fig. 2. Some quantum states of a harmonic oscillator.

However, the field can be decomposed into a set of spatial Fourier harmonics. In
this way we represent the gravitational wave field as a collection of many modes,
many oscillators. Because of the nonlinear character of the Einstein equations,
each of these oscillators is coupled to the variable gravitational field of the sur-
rounding Universe. For sufficiently short gravitational waves of experimental
interest, this coupling was especially effective in the early Universe, when the
condition of the adiabatic behaviour of the oscillator was violated. It is this
homogeneous and isotropic gravitational field of all the matter in the early Uni-
verse that played the role of the external agent – pump field. The variable pump
field acts parametrically on the gravity–wave oscillators and drives them into
multiparticle states. Concretely, the initial vacuum state of each pair of waves
with oppositely directed momenta evolves into a highly correlated state known
as the two–mode squeezed vacuum state [6,7]. The strength and duration of the
effective coupling depends on the oscillator’s frequency. They all start in the
vacuum state but get excited to various amounts. As a result, a broad spectrum
of relic gravitational waves is being formed. This spectrum is accessible to our
observations today.

Let us formulate the problem in more detail.

2 Cosmological Gravitational Waves

In the framework of general relativity, a homogeneous isotropic gravitational
field is decribed by the line element

ds2 = c2dt2 − a2(t)δijdxidxj = a2(η)[dη2 − δijdxidxj ]. (4)

In cosmology, the function a(t) (or a(η)) is called scale factor. In our discussion,
it will represent the gravitational pump field.
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Cosmological gravitational waves are small corrections hij to the metric ten-
sor. They are defined by the expression

ds2 = a2(η)[dη2 − (δij + hij)dxidxj ]. (5)

The functions hij(η,x) can be expanded over spatial Fourier harmonics einx and
e−inx, where n is a constant wave vector. In this way, we reduce the dynam-
ical problem to the evolution of time–dependent amplitudes for each mode n.
Among six functions hij there are only two independent (polarization) compo-
nents. This decomposition can be made, both, for real and for quantized field hij .
In the quantum version, the functions hij are treated as quantum–mechanical
operators. We will use the Heisenberg picture in which the time evolution is car-
ried out by the operators while the quantum state is fixed. This picture is fully
equivalent to the Schrödinger picture, discussed in the Introduction, in which
the vacuum state evolves into a squeezed vacuum state while the operators are
time independent.

The Heisenberg operator for the quantized real field hij can be written as

hij(η,x) =
C

(2π)3/2

∫ ∞
−∞

d3n
2∑

s=1

s
pij(n)

1√
2n

[
s

hn(η)einx s
cn +

s

h
∗
n(η)e

−inx s
c
†
n

]
,(6)

where C is a constant which will be discussed later. The creation and annihilation
operators satisfy the conditions [

s′
cn,

s
c
†
m] = δs′sδ

3(n − m),
s
cn|0〉 = 0, where

|0〉 (for each n and s) is the fixed initial vacuum state discussed below. The
wave number n is related with the wave vector n by n = (δijninj)1/2. The two

polarization tensors
s
pij(n) (s = 1, 2) obey the conditions

s
pijn

j = 0,
s
pijδ

ij = 0,
s′
pij

s
p ij = 2δss′ ,

s
pij(−n) =

s
pij(n).

The time evolution, one and the same for all n belonging to a given n, is repre-
sented by the complex time–dependent function

s

hn(η). This evolution is dictated
by the Einstein equations. The nonlinear nature of the Einstein equations leads
to the coupling of

s

hn(η) with the pump field a(η). For every wave number n and

each polarization component s, the functions
s

hn(η) have the form

s

hn(η) =
1

a(η)
[
s
un(η) +

s
v
∗
n(η)], (7)

where
s
un(η) and

s
vn(η) can be expressed in terms of the three real functions (the

polarization index s is omitted): rn - squeeze parameter, φn - squeeze angle, θn
- rotation angle,

un = eiθn cosh rn, vn = e−i(θn−2φn) sinh rn. (8)

The dynamical equations for un(η) and vn(η)

i
dun
dη

= nun + i
a′

a
v∗n, i

dvn
dη

= nvn + i
a′

a
u∗n (9)



172 L.P. Grishchuk

lead to the dynamical equations governing the functions rn(η), φn(η), θn(η) [7]:

r′n=
a′

a
cos 2φn, φ′n=−n−

a′

a
sin 2φn coth 2rn, θ′n=−n−

a′

a
sin 2φn tanh rn,

(10)

where ′ = d/dη, and the evolution begins from rn = 0. This value of rn charac-
terizes the initial vacuum state |0〉 which is defined long before the interaction
with the pump field became effective, that is, long before the coupling term a′/a
became comparable with n. The constant C should be taken as C =

√
16π lPl

where lPl = (G�/c3)1/2 is the Planck length. This particular value of the con-
stant C guarantees the correct quantum normalization of the field: energy 1

2�ω
per each mode in the initial vacuum state. The dynamical equations and their
solutions are identical for both polarization components s.

Equations (9) can be translated into the more familiar form of the second–

order differential equation for the function
s
µn(η) ≡ s

un(η) +
s
v
∗
n(η) ≡ a(η)

s

hn(η)
[1]:

µ′′n + µn

[
n2 − a′′

a

]
= 0. (11)

Clearly, this is the equation for a parametrically disturbed oscillator (compare
with Eq. (3)). In absence of the gravitational parametric influence represented
by the term a′′/a, the frequency of the oscillator defined in terms of η-time would
be a constant: n. Whenever the term a′′/a can be neglected, the general solution
to Eq. (11) has the usual oscillatory form

µn(η) = Ane
−inη +Bne

inη, (12)

where the constants An, Bn are determined by the initial conditions. On the
other hand, whenever the term a′′/a is dominant, the general solution to Eq.
(11) has the form

µn(η) = Cna+Dna

∫ η dη
a2

. (13)

In fact, this approximate solution is valid as long as n is small in comparison
with |a′/a|. This is more clearly seen from the equivalent form of Eq. (11) written
in terms of the function hn(η) [8]:

h′′n + 2
a′

a
h′n + n2hn = 0. (14)

For growing functions a(η), that is, in expanding universes, the second term
in Eq.(13) is usually smaller than the first one (see below), so that, as long as
n� a′/a, the dominant solution is the growing function µn(η) = Cna(η), and

hn = const. (15)
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η

n 2

Fig. 3. Effective potential U(η).

Equation (11) can be also looked at
as a kind of the Schrödinger equation
for a particle moving in presence of
the effective potential U(η) = a′′/a. In
the situations that are normally con-
sidered, the potential U(η) has a bell–
like shape and forms a barrier (see Fig.
3). When a given mode n is outside
the barrier, its amplitude hn is adia-
batically decreasing with time: hn ∝
e±inη

a(η) . This is shown in Fig.3 by oscil-
lating lines with decreasing amplitudes
of oscillations. The modes with suffi-
ciently high frequencies do not interact
with the barrier, they stay above the
barrier. Their amplitudes hn behave
adiabatically all the time. For these
high–frequency modes, the initial vac-
uum state (in the Schrödinger picture)
remains the vacuum forever. On the
other hand, the modes that interact with the barrier are subject to the supera-
diabatic amplification. Under the barrier and as long as n < a′/a, the function
hn stays constant instead of the adiabatic decrease. For these modes, the initial
vacuum state evolves into a squeezed vacuum state.

After having formulated the initial conditions, the present day behaviour of
rn, φn, θn (or, equivalently, the present day behaviour of hn) is essentially all
we need to find. The mean number of particles in a two–mode squeezed state
is 2 sinh2 rn for each s. This number determines the mean square amplitude
of the gravitational wave field. The time behaviour of the squeeze angle φn
determines the time dependence of the correlation functions of the field. The
amplification (that is, the growth of rn) governed by Eq. (10) is different for
different wave numbers n. Therefore, the present day results depend on the
present day frequency ν (ν = cn/2πa) measured in Hz.

In cosmology, the function H ≡ ȧ/a ≡ ca′/a2 is the time–dependent Hubble
parameter. The function l ≡ c/H is the time–dependent Hubble radius. The
time–dependent wavelength of the mode n is λ = 2πa/n. The wavelength λ has
this universal definition in all regimes. In contrast, the ν defined as ν = cn/2πa
has the usual meaning of a frequency of an oscillating process only in the short–
wavelength (high–frequency) regime of the mode n, that is, in the regime where
λ � l. As we have seen above, the qualitative behaviour of solutions to Eqs.
(11), (14) depends crucially on the comparative values of n and a′/a, or, in
other words, on the comparative values of λ(η) and l(η). This relationship is
also crucial for solutions to Eq. (10) as we shall see now.

In the short–wavelength regime, that is, during intervals of time when the
wavelength λ(η) is shorter than the Hubble radius l(η) = a2/a′, the term n in
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(10) is dominant. The functions φn(η) and θn(η) are φn = −n(η + ηn), θn = φn
where ηn is a constant. The factor cos 2φn is a quickly oscillating function of time,
so the squeeze parameter rn stays practically constant. This is the adiabatic
regime for a given mode.

In the opposite, long–wavelength regime, the term n can be neglected. The
function φn is tanφn(η) ≈ const/a2(η), and the squeeze angle quickly approaches
one of the two values: φn = 0 or φn = π (analog of “phase bifurcation” [9]). The
squeeze parameter rn(η) grows with time according to

rn(η) ≈ ln
a(η)
a∗

, (16)

where a∗ is the value of a(η) at η∗, when the long–wavelength regime, for a given
n, begins. The final amount of rn is

rn ≈ ln
a∗∗
a∗

, (17)

where a∗∗ is the value of a(η) at η∗∗, when the long–wavelength regime and
amplification come to the end. It is important to emphasize that it is not a
“sudden transition” from one cosmological era to another that is responsible
for amplification, but the entire interval of the long–wavelength (non–adiabatic)
regime.

After the end of amplification, the accumulated (and typically large) squeeze
parameter rn stays approximately constant. The mode is again in the adiabatic
regime. In course of the evolution, the complex functions

s
un(η) +

s
v
∗
n(η) become

practically real, and one has
s

hn(η) ≈
s

h
∗
n(η) ≈ 1

ae
rn cosφn(η). Every amplified

mode n of the field (6) takes the form of a product of a function of time and a
(random, operator–valued) function of spatial coordinates; the mode acquires a
standing–wave pattern. The periodic dependence cosφn(η) will be further dis-
cussed below.

It is clearly seen from the fundamental equations (10), (11), (14) that the final
results depend only on a(η). Equations do not ask us the names of our favorite
cosmological prejudices, they ask us about the pump field a(η). Conversely, from
the measured relic gravitational waves, we can deduce the behaviour of a(η),
which is essentially the purpose of detecting the relic gravitons.

3 Cosmological Pump Field

With the chosen initial conditions, the final numerical results for relic gravita-
tional waves depend on the concrete behaviour of the pump field represented by
the cosmological scale factor a(η). We know a great deal about a(η). We know
that a(η) behaves as a(η) ∝ η2 at the present matter–dominated stage. We know
that this stage was preceeded by the radiation–dominated stage a(η) ∝ η. At
these two stages of evolution the functions a(η) are simple power–law functions
of η. What we do not know is the function a(η) describing the initial stage of
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expansion of the very early Universe, that is, before the era of primordial nu-
cleosynthesis. It is convenient to parameterize a(η) at this initial stage also by
power–law functions of η. First, this is a sufficiently broad class of functions,
which, in addition, allows us to find exact solutions to our fundamental equa-
tions. Second, it is known [1] that the pump fields a(η) which have power–law
dependence in terms of η, produce gravitational waves with simple power–law
spectra in terms of ν. These spectra are easy to analyze and discuss in the
context of detection.

We model cosmological expansion by several successive eras. Concretely, we
take a(η) at the initial stage of expansion (i–stage) as

a(η) = lo|η|1+β , (18)

where η grows from −∞, and 1 + β < 0. We will show later how the available
observational data constrain the parameters lo and β. The i–stage lasts up to
a certain η = η1, η1 < 0. To make our analysis more general, we assume that
the i–stage was followed by some interval of the z–stage (z from Zeldovich). It is
known that an interval of evolution governed by the most “stiff” matter (effective
equation of state p = ε) advocated by Zeldovich, leads to a relative increase
of gravitational wave amplitudes [1]. It is also known that the requirement of
conistency of the graviton production with the observational restrictions does
not allow the “stiff” matter interval to be too much long [1], [10]. However, we
want to investigate any interval of cosmological evolution that can be consistently
included. In fact, the z–stage of expansion that we include is quite general. It
can be governed by a “stiffer than radiation” [11] matter, as well as by a “softer
than radiation” matter. It can also be simply a part of the radiation–dominated
era. Concretely, we take a(η) at the interval of time from η1 to some ηs (z–stage)
in the form

a(η) = loaz(η − ηp)1+βs , (19)

where 1 + βs > 0. For the particular choice βs = 0, the z–stage reduces to
an interval of expansion governed by the radiation–dominated matter. Starting
from ηs and up to η2 the Universe was governed by the radiation–dominated
matter (e–stage). So, at this interval of evolution, we take the scale factor in the
form

a(η) = loae(η − ηe). (20)

And, finally, from η = η2 the expansion went over into the matter–dominated
era (m–stage):

a(η) = loam(η − ηm)2. (21)

A link between the arbitrary constants participating in Eqs. (18) - (21) is pro-
vided by the conditions of continuous joining of the functions a(η) and a′(η) at
points of transitions η1, ηs, η2.

We denote the present time by ηR (R from reception). This time is defined
by the observationally known value of the present–day Hubble parameter H(ηR)
and Hubble radius lH = c/H(ηR). For numerical estimates we will be using
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lH ≈ 2× 1028 cm. It is convenient to choose ηR − ηm = 1, so that a(ηR) = 2lH .
The ratio

a(ηR)/a(η2) ≡ ζ2

is believed to be around ζ2 = 104. We also denote

a(η2)/a(ηs) ≡ ζs , a(ηs)/a(η1) ≡ ζ1 .

With these definitions, all the constants participating in Eqs. (18) - (21) (except
parameters β and βs which should be chosen from other considerations) are
being expressed in terms of lH , ζ2, ζs, and ζ1. For example,

|η1| = |1 + β|
2ζ

1
2
2 ζsζ1

1
1+βs

.

The important constant lo is expressed as

lo = blHζ
β−1

2
2 ζβs ζ1

β−βs
1+βs , (22)

where b ≡ 22+β/|1 + β|1+β . Note that b = 1 for β = −2. [This expression for
lo may help to relate formulas written here with the equivalent treatment [12]
which was given in slightly different notations.] The sketch of the entire evolution
a(η) is given in Fig. 4.

We work with the spatially–flat models (4). At every instant of time, the
energy density ε(η) of matter driving the evolution is related with the Hubble
radius l(η) by

κε(η) =
3

l2(η)
, (23)

where κ = 8πG/c4. For the case of power–law scale factors a(η) ∝ η1+β , the
effective pressure p(η) of the matter is related with the ε(η) by the effective
equation of state

p =
1− β

3(1 + β)
ε. (24)

a ( η )

η
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η
S

η
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η
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η
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Fig. 4. Scale factor α(η).
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For instance, p = 0 for β = 1, p = 1
3ε for β = 0, p = −ε for β = −2, and so on.

Each interval of the evolution (18)-(21) is governed by one of these equations of
state.

In principle, the function a(η) could be even more complicated than the one
that we consider. It could even include an interval of the early contraction, in-
stead of expansion, leading to the “bounce” of the scale factor. In case of a
decreasing a(η) the gravitational–wave equation can still be analyzed and the
amplification is still effective [1]. However, the Einstein equations for spatially–
flat models do not permit a regular “bounce” of a(η) (unless ε vanishes at the
moment of “bounce”). Possibly, a “bounce” solution can be realized in alter-
native theories, such, for example, as string–motivated cosmologies [13]. For a
recent discussion of spectral slopes of gravitational waves produced in “bounce”
cosmologies, see [14].

4 Solving Gravitational Wave Equations

The evolution of the scale factor a(η) given by Eqs. (18) - (21) and sketched in
Fig. 4 allows us to calculate the function a′/a. This function is sketched in Fig. 5.
In all the theoretical generality, the left–hand–side of the barrier in Fig.5 could
also consist of several pieces, but we do not consider this possibility here. The
graph also shows the important wave numbers nH , n2, ns, n1. The nH marks
the wave whose today’s wavelength λ(ηR) = 2πa(ηR)/nH is equal to the today’s
Hubble radius lH . With our parametrization a(ηR) = 2lH , this wavenumber is
nH = 4π. The n2 marks the wave whose wavelength λ(η2) = 2πa(η2)/n2 at
η = η2 is equal to the Hubble radius l(η2) at η = η2. Since λ(ηR)/λ(η2) =
(n2/nH)[a(ηR)/a(η2)] and l(ηR)/l(η2) = [a(ηR)/a(η2)][a(ηR)/a(η2)]1/2, this
gives us n2/nH = [a(ηR)/a(η2)]1/2 = ζ

1/2
2 . Working out in a similar fashion

other ratios, we find

n2
nH

= ζ
1
2
2 ,

ns
n2

= ζs,
n1
ns

= ζ1
1

1+βs . (25)

Solutions to the gravitational wave equations exist for any a(η). At intervals
of power–law dependence a(η), solutions to Eq. (11) have simple form of the
Bessel functions. We could have found piece–wise exact solutions to Eq. (11) and
join them in the transition points. However, we will use a much simpler treatment
which is sufficient for our purposes. We know that the squeeze parameter rn
stays constant in the short–wavelength regimes and grows according to Eq. (16)
in the long–wavelength regime. All modes start in the vacuum state, that is,
rn = 0 initially. After the end of amplification, the accumulated value (17) stays
constant up to today. To find today’s value of ern we need to calculate the ratio
a∗∗(n)/a∗(n). For every given n, the quantity a∗ is determined by the condition
λ(η∗) = l(η∗), wheras a∗∗ is determined by the condition λ(η∗∗) = l(η∗∗).

Let us start from the mode n = n1. For this wave number we have a∗ =
a∗∗ = a(η1), and therefore rn1 = 0. The higher frequency modes n > n1 (above
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Fig. 5. The function α′/α for the scale factor from Fig. 4.

the barrier in Fig. 5) have never been in the amplifying regime, so we can write

ern = 1, n ≥ n1. (26)

Let us now consider the modes n in the interval n1 ≥ n ≥ ns. For a given
n we need to know a∗(n) and a∗∗(n). Using Eq. (18) one finds a∗(n)/a∗(n1) =
(n1/n)1+β , and using Eq. (19) one finds a∗∗(n)/a∗∗(ns) = (ns/n)1+βs . Therefore,
one finds

a∗∗(n)
a∗(n)

=
a∗∗(ns)
a∗(n1)

(ns
n

)1+βs
(

n

n1

)1+β

.

Since a∗∗(ns) = a(ηs), a∗(n1) = a(η1), and a(ηs)/a(η1) = ζ1 = (n1/ns)1+βs , we
arrive at

a∗∗(n)
a∗(n)

=
(

n

n1

)β−βs

.

Repeating this analysis for other intervals of the decreasing n, we come to the
conclusion that

ern =
(

n

n1

)β−βs

, n1 ≥ n ≥ ns,

ern =
(

n

ns

)β (
ns
n1

)β−βs

, ns ≥ n ≥ n2,

ern =
(

n

n2

)β−1(
n2
n1

)β (
ns
n1

)−βs

, n2 ≥ n ≥ nH . (27)

The mnemonic rule of constructing ern at successive intervals of decreasing n is
simple. If the interval begins at nx, one takes (n/nx)β∗−β∗∗ and multiples with
ernx , that is, with the previous interval’s value ern calculated at the end of that
interval nx. For the function a′/a that we are working with, the β∗ is always β,
whereas the β∗∗ takes the values βs, 0, 1 at the successive intervals.
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The modes with n < nH are still in the long–wavelength regime. For these
modes, we should take a(ηR) instead of a∗∗(n). Combining with a∗(n), we find

ern =
(

n

nH

)β+1(
nH
n2

)β−1(
n2
n1

)β (
ns
n1

)−βs

, n ≤ nH . (28)

Formulas (26) - (28) give approximate values of rn for all n. The factor ern is
ern ≥ 1 for n ≤ n1, and ern � 1 for n � n1. This factor determines the mean
square amplitude of the gravitational waves.

The mean value of the field hij is zero at every moment of time η and in
every spatial point x: 〈0|hij(η,x)|0〉 = 0. The variance

〈0|hij(η,x)hij(η,x)|0〉 ≡ 〈h2〉

is not zero, and it determines the mean square amplitude of the generated field –
the quantity of interest for the experiment. Taking the product of two expressions
(6) one can show that

〈h2〉 = C2

2π2

∫ ∞
0

n

2∑
s=1

∣∣∣shn(η)∣∣∣2 dn ≡
∫ ∞
0

h2(n, η)
dn
n

. (29)

Using the representation (7), (8) in Eq. (29) one can also write

〈h2〉 = C2

π2a2

∫ ∞
0

ndn(cosh 2rn + cos 2φn sinh 2rn). (30)

We can now consider the present era and use the fact that ern are large numbers
for all n in the interval of our interest n1 ≥ n ≥ nH . Then, we can derive

h(n, η) ≈ C

π

1
a(ηR)

nern cosφn(η) = 8
√
π

(
lPl
lH

)(
n

nH

)
ern cosφn(η) . (31)

The quantity h(n, η) is the dimensionless spectral amplitude of the field whose
numerical value is determined by the calculated squeeze parameter rn. The os-
cillatory factor cosφn(η) reflects the squeezing (standing wave pattern) acquired
by modes with n1 > n > nH . For modes with n < nH this factor is approxi-
mately 1. For high–frequency modes n � nH one has φn(η) ≈ n(η − ηn) � 1,
so that h(n, η) makes many oscillations while the scale factor a(η) is practically
fixed at a(ηR).

The integral (30) extends formally from 0 to ∞. Since rn ≈ 0 for n ≥ n1,
the integral diverges at the upper limit. This is a typical ultra–violet divergence.
It should be discarded (renormalized to zero) because it comes from the modes
which have always been in their vacuum state. At the lower limit, the integral
diverges, if β ≤ −2. This is an infra–red divergence which comes from the as-
sumption that the amplification process has started from infinitely remote time
in the past. One can deal with this divergence either by introducing a lower
frequency cut–off (equivalent to the finite duration of the amplification) or by
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considering only the parameters β > −2, in which case the integral is convergent
at the lower limit. It appears that the available observational data (see below)
favour this second option. The particular case β = −2 corresponds to the de
Sitter evolution a(η) ∝ |η|−1. In this case, the h(n) found in Eqs. (31), (28) does
not depend on n. This is known as the Harrison–Zeldvich, or scale–invariant,
spectrum.

An alternative derivation of the spectral amplitude h(n) uses the approximate
solutions (12), (13) to the wave equation (11). This method gives exactly the
same, as in Eqs. (31), (26) - (28) numerical values of h(n), but does not reproduce
the oscillatory factor cosφn(η).

One begins with the initial spectral amplitude hi(n) defined by quantum
normalization: hi(n) = 8

√
π(lPl/λi). This is the amplitude of the mode n at

the moment η∗ of entering the long wavelength regime, i.e. when the mode’s
wavelength λi is equal to the Hubble radius l(η∗). For λi one derives

λi =
1
b
lo

(nH
n

)2+β
. (32)

Thus, we have

hi(n) = A

(
n

nH

)2+β

, (33)

where A denotes the constant
A = b8

√
π
lP l

lo
. (34)

The numbers hi(n) are defined at the beginning of the long–wavelength regime.
In other words, they are given along the left–hand–side slope of the barrier in
Fig. 5. We want to know the final numbers (spectral amplitudes) h(n) which
describe the field today, at ηR.

According to the dominant solution hn(η) = const of the long–wavelength
regime (see Eq. (15)), the initial amplitude hi(n) stays practically constant up
to the end of the long–wavelength regime at η∗∗, that is, up to the right–hand–
side slope of the barrier. [The second term in Eq. (13) could be important only
at the z–stage and only for parameters βs ≤ −(1/2), which correspond to the
effective equations of state p ≥ ε. In order to keep the analysis simple, we do
not consider those cases.] After the completion of the long–wavelength regime,
the amplitudes decrease adiabatically in proportion to 1/a(η), up to the present
time. Thus, we have

h(n) = A

(
n

nH

)2+β
a∗∗(n)
a(ηR)

. (35)

Let us start from the lower end of the spectrum, n ≤ nH , and go upward
in n. The modes n ≤ nH have not started yet the adiabatic decrease of the
amplitude, so we have

h(n) = A

(
n

nH

)2+β

, n ≤ nH . (36)
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Now consider the interval n2 ≥ n ≥ nH . At this interval, the a∗∗(n)/a(ηR) scales
as (nH/n)2, so we have

h(n) = A

(
n

nH

)β

, n2 ≥ n ≥ nH . (37)

At the interval ns ≥ n ≥ n2 the ratio

a∗∗(n)
a(ηR)

=
a∗∗(n)
a(η2)

a(η2)
a(ηR)

scales as (n2/n)(nH/n2)2, so we have

h(n) = A

(
n

nH

)1+β
nH
n2

, ns ≥ n ≥ n2. (38)

Repeating the same analysis for the interval n1 ≥ n ≥ ns we find

h(n) = A

(
n

nH

)1+β−βs
(

ns
nH

)βs nH
n2

, n1 ≥ n ≥ ns. (39)

It is seen from Eq. (39) that an interval of the z–stage with βs < 0 (the al-
ready imposed restrictions require also (−1/2) < βs) bends the spectrum h(n)
upwards, as compared with Eq. (38), for larger n. If one recalls the relationship
(22) between lo and lH and uses (27), (28) in Eq. (31) one arrives exactly at
Eqs.(36)-(39) up to the oscillating factor cosφn(η).

Different parts of the barrier in Fig.5 are responsible for amplitudes and
spectral slopes at different intervals of n. The sketch of the generated spectrum
h(n) in conjunction with the form of the barrier is shown in Fig.6.

The present day frequency of the oscillating modes, measured in Hz, is defined
as ν = cn/2πa(ηR). The lowest frequency (Hubble frequency) is νH = c/lH . For
numerical estimates we will be using νH ≈ 10−18 Hz. The ratios of n are equal
to the ratios of ν, so that n/nH = ν/νH , for example. For high–frequency modes
we will now often use the ratios of ν instead of ratios of n.

In addition to the spectral amplitudes h(n) the generated field can be also
characterized by the spectral energy density parameter Ωg(n). The energy den-
sity εg of the gravitational wave field is

κεg =
1
4
hij,0hij,0 =

1
4a2

hij
′
hij
′.

The mean value 〈0|εg(η,x)|0〉 is given by

κ〈εg〉 = 1
4a2

C2

2π2

∫ ∞
0

n

2∑
s=1

∣∣∣sh′n(η)∣∣∣2 dn. (40)

For high–frequency modes, it is only the factor e±inη that needs to be differenti-

ated by η. After avaraging out the oscillating factors, one gets
∣∣sh′n∣∣2 = n2

∣∣shn∣∣2,
so that

κ〈εg〉 = 1
4a2

∫ ∞
0

n2h2(n)
dn
n

. (41)
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In fact, the high–frequency approximation, that has been used, permits integra-
tion over lower n only up to nH . And the upper limit, as was discussed above, is
in practice n1, not infinity. The parameter Ωg is defined as Ωg = 〈εg〉/ε, where
ε is given by Eq. (23) (critical density). So, we derive

Ωg =
∫ n1

nH

Ωg(n)
dn
n

=
∫ ν1

νH

Ωg(ν)
dν
ν

and

Ωg(ν) =
π2

3
h2(ν)

(
ν

νH

)2

. (42)
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Fig. 6. Amplitudes and spectral slopes of h(n)
are determined by different parts of the barrier
α′/α.

The dimensionless quantity
Ωg(ν) is useful because it allows
us to quickly evaluate the cosmo-
logical importance of the gener-
ated field in a given frequency in-
terval. However, the primary and
more universal concept is h(ν),
not Ωg(ν). It is the field, not
its energy density, that is di-
rectly measured by the gravity–
wave detector. One should also
note that some authors use
quite a misleading definition
Ωg(f) = (1/ρc)(dρgw/d ln f)
which suggests differentiation of
the gravity–wave energy density
by frequency. This would be in-
correct and could cause disagree-
ments in numerical values of Ωg.
Whenever we use Ωg(ν), we mean relationship (42); and for order of magnitude
estimates one can use [1]:

Ωg(ν) ≈ h2(ν)
(

ν

νH

)2

. (43)

5 Theoretical and Observational Constraints

The entire theoretical approach is based on the assumption that a weak quantized
gravity–wave field interacts with a classical pump field. We should follow the
validity of this approximation throughout the analysis. The pump field can be
treated as a classical gravitational field as long as the driving energy density
ε is smaller than the Planck energy density, or, in other words, as long as the
Hubble radius l(η) is greater than the Planck length lPl. This is a restriction
on the pump field, but it can be used as a restriction on the wavelength λi of
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the gravity–wave mode n at the time of entry the long–wavelength regime. If
l(η∗) > lPl, then λi > lPl. The λi is given by Eq. (32). So, we need to ensure
that

b
lPl
lo

(
ν

νH

)2+β

< 1.

At the lowest–frequency end ν = νH this inequality gives b(lPl/lo) < 1. In fact,
the observational constraints (see below) give a stronger restiction:

b
lPl
lo
≈ 10−6, (44)

which we accept. Then, at the highest–frequency end ν = ν1 we need to satisfy(
ν1
νH

)2+β

< 106. (45)

Let us now turn to the generated spectral amplitudes h(ν). According to
Eq. (36) we have h(νH) ≈ b8

√
π(lPl/lo). The measured microwave beckgound

anisotropies, which we discuss below, require this number to be at the level of
10−5, which gives the already mentioned Eq. (44). The quantity h(ν1) at the
highest frequency ν1 is given by Eq. (39):

h(ν1) = b8
√
π

lPl
lo

(
ν1
νH

)1+β−βs
(

νs
νH

)βs νH
ν2

.

Using Eq. (22) this expression for h(ν1) can be rewritten as

h(ν1) = 8
√
π

lPl
lH

ν1
νH

= 8
√
π
lPl
λ1

, (46)

where λ1 = c/ν1. This last expression for h(ν1) is not surprising: the modes
with ν ≥ ν1 are still in the vacuum state, so the numerical value of h(ν1) is
determined by quantum normalization.

All the amplified modes have started with small initial amplitudes hi, at
the level of zero–point quantum fluctuations. These amplitudes are also small
today, since the hi could only stay constant or decrease. However, even these
relatively small amplitudes should obey observational constraints. We do not
want the Ωg in the high–frequency modes, which might affect the rate of the
primordial nucleosynthesis, to exceed the level of 10−5. This means that Ωg(ν1)
cannot exceed the level of 10−6 or so. The use of Eq. (42) in combination with
Ωg(ν1) ≈ 10−6 and h(ν1) from Eq. (46), gives us the highest allowed frequency
ν1 ≈ 3 × 1010 Hz. We will use this value of ν1 in our numerical estimates.
Returning with this value of ν1 to Eq. (45) we find that parameter β can only
be β ≤ −1.8. We will be treating β = −1.8 as the upper limit for the allowed
values of β.
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We can now check whether the accepted parameters leave room for the pos-
tulated z–stage with βs < 0. Using Eq. (22) we can rewrite Eq. (44) in the
form

10−6
lH
lPl

=
(

ν1
νH

)−β (
ν1
νs

)βs ν2
νH

. (47)

We know that ν2/νH = 102 and ν1/νs is not smaller than 1. Substituting all
the numbers in Eq. (47) one can find that this equation cannot be satisfied for
the largest possible β = −1.8. In the case β = −1.9, Eq. (47) is only marginally
satisfied, in the sense that a significant deviation from βs = 0 toward negative
βs can only last for a relatively short time. For instance, one can accomodate
βs = −0.4 and νs = 108 Hz. On the other hand, if one takes β = −2, a somewhat
longer interval of the z–stage with βs < 0 can be included. For instance, Eq.
(47) is satisfied if one accepts νs = 10−4 Hz and βs = −0.3. This allows us
to slightly increase h(ν) in the interval νs < ν < ν1, as compared with the
values of h(ν) reached in the more traditional case β = −2, βs = 0. In what
follows, we will consider consequences of this assumption for the prospects of
detection of the produced gravitational wave signal. Finally, let us see what the
available information on the microwave background anisotropies [15,16] allows
us to conclude about the parameters β and lo.

Usually, cosmologists operate with the spectral index n (not to be confused
with the wave number n) of primordial cosmological perturbations. Taking into
account the way in which the spectral index n is defined, one can relate n with
the spectral index β + 2 that shows up in Eq.(36). The relationship between
them is n = 2β + 5. This relationship is valid independently of the nature of
cosmological perturbations. In particular, it is valid for density perturbations,
in which case the h(n) of Eq.(36) is the dimensionless spectral amplitude of
metric perturbations associated with density perturbations. If primordial gravi-
tational waves and density perturbations were generated by the mechanism that
we discuss here (the assumption that is likely to be true) than the parameter β
that participates in the spectral index is the same one that participates in the
scale factor of Eq. (18). Primordial gravitational waves and primordial density
perturbations with the same spectral index produce approximately the same
lower–order multipole distributions of large–scale anisotropies.

The evaluation of the spectral index n of primordial perturbations have re-
sulted in n = 1.2±0.3 [16] or even in a somewhat higher value. A recent analysis
[17] of all available data favors n = 1.2 and the quadrupole contribution of grav-
itational waves twice as large as that of density perturbations. One can interpret
these evaluations as indication that the true value of n lies somewhere near
n = 1.2 (hopefully, the planned new observational missions will determine this
index more accurately). This gives us the parameter β somewhere near β = −1.9.
We will be using β = −1.9 in our estimates below, as the observationally pre-
ferred value. The parameter β can be somewhat larger than β = −1.9. However,
as we already discussed, the value β = −1.8 (n = 1.4) is the largest one for
which the entire approch is well posed. The Harrison–Zeldovich spectral index
n = 1 corresponds to β = −2.
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Fig. 7. Expected spectrum h(ν) for the case β = −1.9.

The observed quadrupole anisotropy of the microwave background radia-
tion is at the level δT/T ≈ 10−5. The quadrupole anisotropy that would be
produced by the spectrum (36) - (39) is mainly accounted for by the wave num-
bers near nH . Thus, the numerical value of the quadrupole anisotropy produced
by relic gravitational waves is approximately equal to A. According to general
physical considerations and detailed calculations [18], the metric amplitudes of
long–wavelength gravitational waves and density perturbations generated by the
discussed amplification mechanism are of the same order of magnitude. There-
fore, they contribute roughly equally to the anisotropy at lower multipoles. This
gives us the estimate A ≈ 10−5, that we have already used in Eq. (44). It is not
yet proven observationally that a significant part of the observed anosotropies
at lower multipoles is indeed provided by relic gravitational waves, but we can
at least assume this with some degree of confidence. It is likely that the future
measurements of the microwave background radiation will help us to verify this
theoretical conclusion.

Combining all the evaluated parameters together, we show in Fig. 7 the
expected spectrum of h(ν) for the case β = −1.9. A small allowed interval of the
z–stage is also included. The intervals of the spectrum accessible to space–based
and ground–based interferometers are indicated by vertical lines.

It is necessary to note [18,19] that the confirmation of any n > 1 (β > −2)
would mean that the very early Universe was not driven by a scalar field – the
cornerstone of inflationary considerations. This is because the n > 1 (β > −2)
requires the effective equation of state at the initial stage of expansion to be
ε+p < 0 (see Eq. (24)), but this cannot be accomodated by any scalar field with
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whichever scalar field potential. The available data do not prove yet that n > 1,
but this possibility seems likely.

It is also necessary to say that a certain damage to gravitational wave research
was inflicted by the so called “standard inflationary result”. The “standard in-
flationary result” predicts infinitely large amplitudes of density perturbations
in the interval of spectrum with the Harrison–Zeldovich slope n = 1 (β = −2):
δρ/ρ ∝ 1/

√
1− n. The metric (gravitational field) amplitudes of density pertur-

bations are also predicted to be infinitely large, in the same proportion. Through
the so–called “consistency relation” this divergence leads to the vanishingly small
amplitudes of relic gravitational waves. Thus, the “standard” inflationary theory
predicts zero for relic gravitational waves; the spectrum similar in shape to the
one shown in Fig. 7 would have been shifted down by many orders of magnitude.
This prediction is hanging on the “standard inflationary result”, but the “result”
itself is in a severe conflict not only with theory but with observations too: when
the observers marginalize their data to n = 1 (enforce this value of n in data anal-
ysis) they find finite and small density perturbations instead of infinitely large
perturbations predicted by inflationary theorists. (For analytical expressions of
the “standard inflationary result” see any inflationary article, including recent
reviews. For graphical illustration of the predicted divergent density perturba-
tions and quadrupole anisotropies see [20], for example. For critical analysis and
disagreement with the “standard inflationary result” see [18].) General relativity
and quantum field theory do not produce the “standard inflationary result”, so
we shall better return to what they say.

6 Detectability of Relic Gravitational Waves

We switch now from cosmology to prospects of detecting the predicted relic
gravitational waves. The ground–based [21]-[23] and space–based [24], [25] laser
interferometers (see also [26]-[28]) will be in the focus of our attention. We use
laboratory frequencies ν and intervals of laboratory time t (cdt = a(ηR)dη).
Formulas (38) and (39), with A = 10−5, ν2/νH = 102, and the oscillating factor
restored, can be written as

h(ν, t) ≈ 10−7 cos[2πν(t− tν)]
(

ν

νH

)β+1

, ν2 ≤ ν ≤ νs (48)

and

h(ν, t) ≈ 10−7 cos[2πν(t− tν)]
(

ν

νH

)1+β−βs
(

νs
νH

)βs

. νs ≤ ν ≤ ν1 (49)

where the deterministic (not random) constant tν does not vary significantly
from one frequency to another at the intervals ∆ν ≈ ν. The explicit time depen-
dence of the spectral variance h2(ν, t) of the field, or, in other words, the explicit
time dependence of the (zero–lag) temporal correlation function of the field at
every given frequency, demonstrates that we are dealing with a non–stationary
process (a consequence of squeezing and severe reduction of the phase uncer-
tainty). We will first ignore the oscillating factor and will compare the predicted
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amplitudes with the sensitivity curves of advanced detectors. The potential re-
serve of improving the signal to noise ratio by expoloiting the squeezing will be
discussed later.

Let us start from the Laser Interferometer Space Antenna (LISA) [24]. The in-
strument will be most sensitive in the interval, roughly, from 10−3 Hz to 10−1 Hz,
and will be reasonably sensitive in a broader range, up to frequencies 10−4 Hz
and 1 Hz. The sensitivity graph of LISA to a stochastic background is usually
plotted under the assumption of a 1–year observation time, that is, the root–
mean–square (r.m.s.) instrumental noise is being evaluated in frequency bins
∆ν = 3 × 10−8 Hz around each frequency ν. We need to rescale our predicted
amplitude h(ν) to these bins.

The mean square amplitude of the gravitational wave field is given by the
integral (29). Thus, the r.m.s. amplitude in the band ∆ν centered at a given
frequency ν is given by the expression

h(ν,∆ν) = h(ν)

√
∆ν

ν
. (50)

We use Eqs. (48), (49) and calculate expression (50) assuming ∆ν = 3×10−8 Hz.
The results are plotted in Fig. 8. Formula (48) has been used throughout the
covered frequency interval for the realistic case β = −1.9 and for the extreme
case β = −1.8. The line marked z–model describes the signal produced in the
composite model with β = −2 up to νs = 10−4 Hz (formula (48)) and then
followed by formula (49) with βs = −0.3. This model gives the signal a factor
of 3 higher at ν = 10−3 Hz, than the model β = −2 extrapolated down to this
frequency.

There is no doubt that the signal β = −1.8 would be easily detectable even
with a single instrument. The signal β = −1.9 is marginally detectable, with
the signal to noise ratio around 3 or so, in a quite narrow frequency interval
near and above the frequency 3 × 10−3 Hz. However, at lower frequencies one
would need to be concerned with the possible gravitational wave noise from
unresolved binary stars in our Galaxy. The further improvement of the expected
LISA sensitivity by a factor of 3 may prove to be crucial for a confident detection
of the predicted signal with β = −1.9.

Let us now turn to the ground–based interferometers operating in the interval
from 10 Hz to 104 Hz. The best sensitivity is reached in the band around ν =
102 Hz. We take this frequency as the representative frequency for comparison
with the predicted signal. We will work directly in terms of the dimensionless
quantity h(ν). If necessary, the r.m.s. amplitude per Hz1/2 at a given ν can be
found simply as h(ν)/

√
ν. The instrumental noise will also be quoted in terms

of the dimensionless quantity hex(ν).
The expected sensitivity of the initial instruments at ν = 102 Hz is hex =

10−21 or better. The theoretical prediction at this frequency, following from (48),
(49) with βs = 0, is hth = 10−23 for β = −1.8, and hth = 10−25 for β = −1.9.
Therefore, the gap between the signal and noise levels is from 2 to 4 orders
of magnitude. The expected sensitivity of the advanced interferometers, such as
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Fig. 8. Expected spectrum β = −1.9 and other possible spectra in comparison with
the LISA sensitivity.

LIGO-II [29], can be as high as hex = 10−23. In this case, the gap vanishes for the
β = −1.8 signal and reduces to 2 orders of magnitude for the β = −1.9 signal.
Fig. 9 illustrates the expected signal in comparison with the LIGO-II sensitivity.
Since the signal lines are plotted in terms of h(ν), the LISA sensitivity curve
(shown for periodic sources) should be raised and adjusted in accordance with
Fig. 8.

A signal below noise can be detected if the outputs of two or more detectors
can be cross correlated. (For the early esimates of detectability of relic gravita-
tional waves see [30].) The cross correlation will be possible for ground–based
interferometers, several of which are currently under construction. The gap be-
tween the signal and the noise levels should be covered by a sufficiently long
observation time τ . The duration τ depends on whether the signal has any tem-
poral signature known in advance, or not. We start from the assumption that no
temporal signatures are known in advance. In other words, we first ignore the
squeezed nature of the relic background and work under the assumption that
the squeezing cannot be exploited to our advantage.

The response of an instrument to the incoming radiation is s(t) = Fijh
ij

where Fij depends on the position and orientation of the instrument. Since the
hij is a quantum–mechanical operator (see Eq. (6)) we need to calculate the
mean value of a quadratic quantity. The mean value of the cross correlation of
responses from two instruments 〈0|s1(t)s2(t)|0〉 will involve the overlap reduction
function [31]-[34], which we assume to be not much smaller than 1 [33]. The
signal to noise ratio S/N in the measurement of the amplitude of a signal with
no specific known features increases as (τν)1/4, where ν is some characteristic
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Fig. 9. Full spectrum h(ν) accessible to laser interferometers.

central frequency. If the signal has features known in advance and exploited by
the matched filtering technique, the S/N increases as (τν)1/2.

We apply the guaranteed law (τν)1/4 to initial and advanced instruments at
the representative frequency ν = 102 Hz. This law requires a reasonably short
time τ = 106 sec in order to improve the S/N in initial instruments by two orders
of magnitude and to reach the level of the signal with extreme spectral index
β = −1.8. The longer integration time or a better sensitivity will make the S/N
larger than 1. In the case of a realistic spectral index β = −1.9 the remaining gap
of 4 orders of magnitude can be covered by the combination of a significantly
better sensitivity and a longer observation time (not necessarily in one non–
interrupted run). The sensitivity of the advanced laser interferometers, such as
LIGO II, at the level hex = 10−23 and the same observation time τ = 106 sec
would be sufficient for reaching the level of the predicted signal with β = −1.9.

An additional increase of S/N can be achieved if the statistical properties
of the signal can be properly exploited. Squeezing is automatically present at
all frequencies from νH to ν1. The squeeze parameter r is larger in gravitational
waves of cosmological scales, and possibly the periodic structure in Eq. (31) can
be better revealed at those scales. However, we are interested here in frequencies
accessible to ground based interferometers, say, in the interval 30 Hz − 100 Hz.
If our intention were to monitor one given frequency ν from the beginning of
its oscillating regime and up till now, then, in order to avoid the destructive
interference from neighbouring modes during all that time, the frequency res-
olution of the instrument should have been increadibly narrow, of the order of
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10−18 Hz. Certainly, this is not something what we can, or intend to do. Although
the amplitudes of the waves have adiabatically decreased and their frequencies
redshifted since the beginning of their oscillating regime, the general statistical
properties of the discussed signal are essentially the same now as they were 10
years after the Big Bang or will be 1 million years from now.

The periodic structure (48) may survive at some level in the instrumental win-
dow of sensitivity from νmin (minimal frequency) to νmax (maximal frequency).
The mean square value of the field in this window is∫ νmax

νmin

h2(ν, t)
dν
ν

= 10−14
1

νH2β+2

∫ νmax

νmin

cos2[2πν(t− tν)]ν2β+1dν . (51)

Because of the strong dependence of the integrand on frequency, ν−2.6 or ν−2.8,
the value of the integral (51) is determined by its lower limit. Apparently, the
search through the data should be based on the periodic structure that may
survive at ν = νmin. As an illustration, one can consider such a narrow interval
∆ν = νmax − νmin that the integral (51) can be approximated by the formula∫ νmax

νmin

h2(ν, t)
dν
ν
≈ 10−14

(
νmin

νH

)2β+2(
∆ν

νmin

)
cos2[2πνmin(t− tmin)] .

Clearly, the correlation function is strictly periodic and its structure is known in
advance, in contrast to other possible signals. This is a typical example of using
the a priori information. Ideally, the gain in S/N can grow as (τνmin)1/2. This
would significantly reduce the required observation time τ . For a larger ∆ν, even
an intermediate gain between the guaranteed law (τν)1/4 and the law (τν)1/2,
adequate for the matched filtering technique, would help. This could potentially
make the signal with β = −1.9 measurable even by the initial laser interferome-
ters. A straightforward application of (51) for exploiting the squeezing may not
be possible, as argued in the recent study [35], but more sophisticated methods
are not excluded.

For frequency intervals covered by bar detectors and electromagnetic detec-
tors, the results expected follow from the same formulas (48,49) and have been
briefly discussed elsewhere [30,19].

7 Conclusion

It would be strange, if the predicted signal at the level corresponding to β = −1.9
were not seen by the instruments capable of its detection. There are not so many
cosmological assumptions involved in the derivation that could prove wrong, thus
invalidating our predictions. On the other hand, it would be even more strange
(and even more interesting) if the relic gravitational waves were detected at
the level above the β = −1.8 line. This would mean that there is something
fundamentally wrong in our basic cosmological premises. To summarise, it is
quite possible that the detection of relic (squeezed) gravitational waves may be
awaiting only the first generation of sensitive instruments and an appropriate
data processing strategy.
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Abstract. Modern formulations of equivalence principles provide the foundation for
an efficient approach to understanding and organizing the structural features of grav-
itation field theories. Since theories’ predictions reflect differences in their structures,
principles of equivalence also support an efficient experimental strategy for testing grav-
itation theories and for exploring the range of conceivable gravitation physics. These
principles focus attention squarely on empirical consequences of the fundamental struc-
tural differences that distinguish one gravitation theory from another. Interestingly, the
variety of such consequences makes it possible to design and perform experiments that
test equivalence principles stringently but do so in markedly different ways than the
most familiar experimental tests.

1 Equivalence Principles and the Structure
of Gravitation Theories

1.1 From the Weak to Einstein’s Equivalence Principle

Since the time of the Renaissance observations indicating that bodies fall in a
gravitational field in a way that is independent of their internal composition and
structure have been considered remarkable. Clearly Newton thought so since he
deemed it necessary to perform pendulum experiments to verify this property of
freefall as precisely as he could before he published laws of motion and universal
gravitation that predict it [1]. Einstein also found this property of freefall remark-
able. The insight he gained by reflecting on it in his famous elevator Gedanken
experiment [2] is communicated by what we now call the Einstein equivalence
principle (EEP).

Einstein noted that if all bodies fall in the same way in an external gravita-
tional field, an observer in freefall will find that freely falling bodies in his or her
neighborhood move with uniform velocities relative to him or her and that the
physics of pure particle mechanics in that neighborhood is indistinguishable from
mechanics in the absence of gravity. This led him to suggest that a freely falling
observer might find all other nongravitational physics in his or her neighborhood
to be indistinguishable from such physics in the absence of gravity. Einstein then
proceeded to show that if this were true for electrodynamic physics, which was
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all fundamental physics at the time, light propagating out of a gravitational
potential well must suffer a redshift.

The following modern formulation of the EEP expresses the possibility sug-
gested by Einstein in 1907. It states that the outcome of any local, nongravi-
tational test experiment is independent of the experimental apparatus’ velocity
relative to the gravitational field and is independent of where and when in the
gravitational field the experiment is performed. This captures Einstein’s sugges-
tion because, in principle, local nongravitational test experiments can be per-
formed in spacetime regions where gravity is negligible. The two conditions that
the EEP imposes are referred to as local Lorentz and local position invariance,
respectively. Note that a local experiment is one performed within a spacetime
region so small that the experimental apparatus can detect no tidal effects. A test
experiment is one performed with an apparatus having a mass so small that the
apparatus can detect no effect of the perturbation it induces in the gravitational
field.

From the perspective of 1907, the EEP is a striking generalization from the
observed equality of test body accelerations in a gravitational field, and, as a
matter of history, the gravitational redshift was the first physical consequence to
be derived on the assumption that this generalization is valid. Given this history,
it is not surprising that refinements of experimental tests of the universality of
freefall acceleration and of measurements of the gravitational redshift remain
among the most widely recognized tests of the validity of the EEP. Efforts to
refine both kinds of test continue today. Readers can refer to Lute Maleki’s
article [3] in this volume for details on a proposed space–based variation on
gravitational redshift measurements.

Tests of the universality of free fall acceleration are often referred to as Eötvös
experiments because of the classic torsion–balance version performed by Baron
von Eötvös and collaborators early in this century [4]. As noted above, the pro-
cess of refining such tests continues today. For example, the group of Adelberger
at the University of Washington [5] recently reported results of a torsion–balance
experiment that include the conclusion that the gravitational accelerations of
beryllium and copper test bodies toward the Earth are equal to better than 2.5
parts in 1012. The ultimate refinement of tests of the equality of such accel-
erations may well be represented by the space–based STEP experiment under
development at Stanford University. Readers can refer to an article in this vol-
ume for details on STEP [6].

Interest in such experiments remains high because our understanding of their
significance as tests of the EEP has evolved significantly since 1907. The clear
distinction Einstein made at that time between particle mechanics and other
nongravitational physics, specifically electromagnetic physics, is no longer vi-
able. We now understand how test bodies are composed of atoms and that they,
in turn, are composites of the mass–energy of nucleons and electrons and of the
electromagnetic, weak– and strong–interaction binding energies of these parti-
cles. Consequently, the freefall acceleration of test bodies can be influenced by
many, if not all, aspects of nongravitational physics in an external gravitational
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field, and experiments which test the universality of such accelerations turn out
to be more profound tests of the EEP than one could have realized in 1907. We
will return to this point later in section 2.1.

Set aside, for a moment, the issue of whether or not the EEP is valid and
questions regarding the precision to which we may be able to establish exper-
imentally that it is valid. Is it possible to formulate a gravitation field theory
which predicts that it is valid? It took Einstein almost ten years from the time
of his 1907 insight to establish that the answer to this question is yes. He did
so by formulating general relativity [7]. Interested readers can refer to the re-
cent review by Norton [8] for a discussion of the fascinating and in many ways
still controversial history of Einstein’s development of general relativity and of
others’ early attempts to understand the theory. This story is plagued by many
formulations of the equivalence principle, confusion regarding the significance of
coordinates and covariance and so on. We will not delve further into it here.
Instead, we discuss the kind of analysis one must do to determine whether or
not any given gravitation field theory predicts the validity of the EEP.

1.2 Theoretical Contexts for Analyses of the EEP

If an analysis reveals outcomes of some local nongravitational test experiment
that depend on the velocity of the experimental apparatus relative to an external
gravitational field or on where or when in that field the experiment is performed,
it is clear that the underlying theory is nonmetric, that is, it violates the EEP.
Significantly, such an analytical result also provides the basis for actual exper-
iments that search for the specific preferred–frame or preferred–location effect
revealed by the analysis. This approach has led to the development of many
stringent new tests of the EEP that are quite different from familiar Eötvös ex-
periments and gravitational redshift measurements. It has also clarified which
structural features of gravitation field theories are constrained by experimental
evidence that the EEP is valid to some level of precision.

Lagrangian field theory provides a natural setting for a general discussion
of gravitation field theories. However, we note that much of what follows can
be discussed in terms of gravitation field equations and matter–field equations
of motion. Indeed, a number of recent papers exploit this latter approach to
consider modifications of the Maxwell equations caused by quantum gravity ef-
fects. Papers by Gambini and Pullin [9] and by Ellis et al. [10] are examples.
The paper of Haugan and Lämmerzahl [11] begins the analysis of physical con-
sequences of a broad range of conceivable Maxwell equation modifications of this
kind and the consideration of experiments that could detect them or constrain
their magnitudes.

Returning to Lagrangian–based gravitation theories, we recall that each ad-
mits a formulation via an action principle,

δ

∫
L(ψg, ψm) d4x = 0. (1)
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Here, ψg denotes dependence of the Lagrangian density on gravitational poten-
tials and their derivatives, and ψm denotes dependence on matter fields and their
derivatives. Not that long ago, one would have restricted attention to theories
in which field derivatives appear only in conventional “kinetic” terms in L, but
attitudes have changed so that field theories tend to be viewed as effective rather
than fundamental theories. Consequently, there is now a greater willingness to
consider dependence on higher–order derivatives and the presence of derivative
couplings between fields. Such things can make theories nonrenormalizable, but
this is not the issue for effective theories that it is for fundamental ones.

A theory’s Lagrangian density L can be split into a purely gravitational part
and “nongravitational” remainder, L = Lg + Lng. The gravitational part Lg
depends only on gravitational potentials and their derivatives. Its form specifies
the dynamics of free gravitational fields in the theory. The nongravitational part
Lng depends on gravitational potentials and their derivatives and on matter
fields and their derivatives. Its form specifies the coupling between matter and
gravity in the theory. Its form determines both how matter responds to gravity
and how matter acts as a source of gravity.

1.3 The Role of Locality

The matter fields involved in a local, nongravitational test experiment do not
perturb gravitational potentials to a degree that the experiment can detect. It
follows that when using a theory to predict the outcome of such an experiment we
can treat gravitational potentials as specified functions which represent the grav-
itational environment generated by some source. They are external potentials.
To predict the outcome of the experiment one needs only a theory’s equations
which govern the evolution of matter fields in the relevant gravitational envi-
ronment. We derive these gravitationally–modified equations of motion from the
theory’s action principle (1) by considering variations of the matter fields while
keeping the external gravitational potential functions fixed in the appropriate
form. Consequently, the outcomes of experiments that directly test the EEP de-
pend on the form of a theory’s nongravitational Lagrangian density Lng alone.
Clearly, evidence that the EEP is valid to some precision can constrain only the
manner in which matter couples to gravity.

Since experiments that directly test the EEP are local as well as test ex-
periments, their outcomes are insensitive to the global form of external gravi-
tational potentials. It is sufficient to consider initial terms of the Taylor–series
expansions of external potentials when using a theory’s action principle to pre-
dict a local experiment’s outcome. The expansions should be made about an
event inside the experimental apparatus during the course of the experiment.
Keeping terms through first order is sufficient to predict the outcome of any
local experiment. However, in some important cases it is sufficient to keep only
zeroth–order terms. In particular, this can be the case when an experiment is
completed quickly enough that the experimental apparatus can detect no effect
of external potential time dependence and no effect of accelerations induced by
external potential spatial dependence. This is generally true of realistic local
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experiments which measure atomic transition frequencies, for example, and ex-
plains why atomic clocks may generally be treated as realizations of ideal clocks
in the sense defined by theories of relativity.

To make the remainder of this discussion a bit more concrete focus on exper-
iments involving such atomic transitions. To this point, we have established that
a theory’s predictions of their outcomes follows from the form that its nongravi-
tational Lagrangian density Lng takes when values of the external gravitational
potentials and, if there are derivative matter–gravity couplings, values of their
derivatives at an event inside the experimental apparatus during the experi-
ment are plugged in. The resulting Lagrangian density has no explicit depen-
dence on the spacetime coordinates and involves only matter fields. It determines
the gravitationally–modified equations of motion which govern the structure of
atoms treated as local test bodies. Note, however, that if we are interested only
in atomic transition frequencies, we need not deal with these equations. We can,
instead, compute energies of atomic states directly.

1.4 Relevant Observables

An expression for such energies follows from the form of the Lagrangian den-
sity introduced in the preceding paragraph because it is time independent. If
natural coordinates are used in representing a theory’s action principle (1), the
energy expression’s form will be that of the Standard Model Hamiltonian plus
perturbating terms. In this context, natural coordinates are ones in which the
form of the representation of the theory’s nongravitational Lagrangian density
Lng reduces to the familiar representation of the Standard Model Lagrangian
density as gravity is “turned off.” Schwarzschild coordinates provide a familiar
example of natural coordinates in the context of general relativity and situations
in the external gravitational potential is static and spherically symmetric.

Accurate estimates of the energies of atomic states are easily computed when
the gravitationally–modified Hamiltonian is a perturbed Standard Model Hamil-
tonian. In general, the results depend on an atom’s velocity through and location
in the external gravitational potentials. This is the case because the perturbing
Hamiltonian terms reflect not only the form of the gravitation theory’s nongrav-
itational Lagrangian density Lng but also the atom’s gravitational environment.
This environment is represented by the values in the atom’s neighborhood of
the external gravitational potentials and, if there are derivative matter–gravity
couplings, the values of their derivatives.

Despite their velocity and location dependence these computed atomic state
energies may not represent preferred–frame or preferred–location effects that
signal violation of the Einstein equivalence principle. Even when we are using
natural coordinates they are merely coordinate energies. Only velocity or location
dependence of an experimentally measured atomic state energy, or frequency of
a transition between such states, would constitute a genuine preferred–frame or
preferred–location effect.

The distinction between coordinate energies or frequencies and measured en-
ergies or frequencies is, in some respects, subtle. However, it is not difficult to
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appreciate if one remembers that, fundamentally, any measurement is simply
the comparison of a property of some system of interest to the corresponding
property of a chosen standard system. Thus, a measurement of the frequency of
a transition between some pair of atomic states is simply a comparison of its co-
ordinate frequency to the coordinate frequency of a selected standard transition.
For example, one can imagine locking a laser to the transition whose frequency
is to be measured and a second laser to the frequency of the standard transition.
The coordinate frequency of each laser can depend on velocity through or loca-
tion in the external gravitational potential, but the relative or beat frequency
between them, which is the measured frequency, may not. While it may seem far–
fetched to imagine cases in which coordinate energies of all atomic states depend
on velocity through or location in external gravitational potentials in precisely
the same way, thus, causing such dependence to cancel from measured energies,
this is precisely what metric theories of gravity like general relativity predict.
The preferred–frame or preferred–location effects predicted by nonmetric theo-
ries of gravity occur because their matter–gravity couplings distinguish between
the contributions of rest–mass and of different types of interaction–energy to
the energies of atomic states and, so, prevent such universal cancellations of
coordinate effects. If such couplings are present, the observable frequency ratio
for a pair of atomic clocks whose ticking rates are governed by different atomic
transition and which move together through an external gravitational potential
can depend on the clocks’ location in and velocity through the potential. In the
limit of slow motion and weak gravitation this frequency ratio takes the form

ν1(x,v)
ν2(x,v)

=
ν01
ν02

(
1 + αijv

ivj + βijU
ij(x)

)
, (2)

where the xi denote natural spatial coordinates that reduce to Cartesian ones
as gravity is turned off, the vi denote corresponding components of the clocks’
coordinate velocity and U ij(x) denotes the usual Newtonian gravitational po-
tential tensor at the clocks’ location. The parameters αij and βij depend on
the particular transitions controlling the atomic clock rates, except in metric
theories of gravity which predict that they all vanish. Their tensor character
reflects the fact that the orientation of the atoms whose transitions govern the
atomic clock rates can affect the observed frequency ratio (2). Nonvanishing αij

and βij parameters characterize preferred–frame and preferred–location effects,
respectively.

To conclude this discussion of the way in which Lagrangian–based gravitation
theories predict outcomes of local, nongravitational test experiments, briefly con-
sider the acceleration of test bodies in an external gravitational field once more.
We focus on the freefall of atoms since, as we noted earlier, realistic test bodies
are simply assemblages of them.

The analysis of atomic systems outlined above yields an expression for the
coordinate energy of any atom in any state of interest. This energy is a function of
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the atom’s velocity relative to and location in an external gravitational potential

E = mc2 +
1
2
m

(
δij +

δmiij

m

)
vivj +m

(
δij +

δmgij

m

)
U ij(x) , (3)

where δmiij and δmgij are the anomalous inertial and gravitational mass tensors.
They depend on the particular state of the particular atom under consideration,
except in metric theories of gravity which predict that they vanish. The αij and
βij parameters appearing in (2) are determined by the anomalous mass tensors
of the states involved in the atomic clock transitions considered above.

When the external gravitational potential is time independent, the coordinate
energy function (3) is globally conserved and its dependence on atomic velocity
and location determines the atom’s coordinate acceleration via familiar energy
conservation arguments,

ai = δij∂jU +
δmij

i

m
∂jU + δij

δmgkl

m
∂jU

kl(x), (4)

(here δmij
i = δmiij). Kenneth Nordtvedt [12] and Mark Haugan [13] exploit

such arguments to relate the outcomes Eötvös experiments to the outcomes of
gravitational redshift measurements and other tests of the EEP.

In the end, the preceding overview of the kind of analysis one must do to
determine the outcomes of local nongravitational test experiments predicted by
Lagrangian–based gravitation field theories brings one full circle. We have come
back to the most familiar experimental tests of the EEP, but with a deeper
appreciation of the significance of their results. In the next section we consider
examples of nonmetric theories and formalisms encompassing whole classes of
such theories within which preferred–frame and preferred–location effects have
been analyzed to provide a basis for testing the EEP. Much of the work on
tests of the EEP done before 1993 is thoroughly reviewed in the early chapters
of Clifford Will’s Theory and Experiment in Gravitation Physics [14], for an
update see [15], see also [16].

2 Theoretical Frameworks for the Analysis of EEP Tests

The approach outlined in the preceding section can be used to determine prefer-
red–frame and preferred–location effects predicted by any nonmetric theory of
gravity. Such effects reflect the form of the theory’s nongravitational Lagrangian
density Lng once the external gravitational potential in which a local nongrav-
itational test experiment is performed has been plugged in. Proceeding in this
fashion, we would have to analyze and reanalyze any given experiment to deter-
mine its outcome as predicted by competing theories.

It is, instead, more efficient to analyze local nongravitational test experi-
ments once and for all within the context of more general theoretical frameworks
that encompass broad classes of nonmetric gravitation theories and gravitational
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environments. Such frameworks are based on models of the nongravitational La-
grangian or corresponding matter field equations that depend on phenomenolog-
ical gravitational potentials in ways that encompass the forms of these structures
in many nonmetric theories and environments. The outcome of an experiment
predicted within such a framework immediately yields the outcome predicted by
any nonmetric theory it encompasses when the framework’s phenomenological
gravitational potentials are expressed in terms of the particular theory’s poten-
tials. The efficiency of this approach is somewhat like that provided by the PPN
formalism [14] when dealing with the gravitational dynamics of metric theories.

Analyses carried out in the general nonmetric frameworks discussed below
have the additional benefit of identifying mechanisms that lead to preferred–
frame or preferred–location effects in entire classes of nonmetric theories and of
providing theory–independent parametrizations of such effects that are useful in
discussing the results of experiments designed to search for them.

2.1 The THεµ–Formalism

The THεµ–formalism (see [17,14]) is based on the form of the Lagrangian gov-
erning the dynamics of point particles with mass mi and charge qi and of the
electromagnetic field in a static, spherically symmetric background gravitational
field described by the phenomenological gravitational potentials T , H, ε and µ:

L = −
∑
i

mi

∫ √
T −Hẋ2i dt+

∑
i

qi

∫
Aaẋi dx

a +
1
8π

∫ (
εE2 − 1

µ
B2
)
d4x.

(5)

A striking feature of this framework and the nonmetric theories it encompasses is
that the limiting speed of massive particles in the neighborhood of some point in
the gravitational field can differ from the speed of light there. These coordinate
speeds are given, respectively, by the values of

√
T/H and 1/

√
εµ at the point

of interest. Preferred–frame effects result when the ratio of these speeds is not
unity. Variation of the relative values of T , H, ε and µ with position in the
gravitational field can also lead to preferred–location effects. Computations of
the energies of atomic states using natural quantum mechanical extensions of the
classical THεµ Lagrangian reveal both kinds of effects and yield predictions for
anomalous inertial and gravitational mass tensors (compare Eq.(3)) [13,18,19].
A quantum field theoretic extension of the formalism reveals EEP violations
discernable in measurements of the Lamb shift, the anomalous magnetic moment
of the electron and related phenomena [21].

This test theory has been widely used to interpret the results of experimental
tests of the EEP. For example, its predictions of the energies of atomic states
[13], [18] and [19] have be used to interpret Hughes–Drever type experiments as
well as the Vessot–Levine rocket redshift experiment [20,14].

Originally conceived as a framework for analyzing the physics of charged
particles and electromagnetic fields in an external gravitational field, the THεµ–
formalism has also been extended in a natural way to cover the other sectors of
nongravitational physics comprising the Standard Model [22].
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2.2 The χg–Formalism

Like the THεµ–formalism the χg–formalism introduced by W.–T. Ni [23] origi-
nally provided a framework for the analysis of electrodynamic physics in a back-
ground gravitational field and has subsequently been extended to cover other
sectors of the Standard Model. Unlike the THεµ–formalism the χg–formalism is
not restricted to static, spherically symmetric gravitational environments. The
χ of its name refers to a tensor field appearing in the electromagnetic part of
the nongravitational Lagrangian density upon which the formalism is based,

Lem = − 1
16π

χαβγδFαβFγδ. (6)

The independent components of this tensor comprise twenty–one phenomeno-
logical gravitational potentials capable of representing gravitational fields in a
very broad class of nonmetric gravitation theories.

The coupling of one particular phenomenological potential to the electro-
magnetic field is interesting because it can be expressed as a purely derivative
coupling to a pseudoscalar field ϕ. A particle physicist would describe it as an
axion coupling. A relativist would describe it as a coupling to axial torsion [24].
The Hojmann–Rosenbaum–Ryan–Shepley theory [25] is but one example of a
theory encompassed by Ni’s χg–formalism. It features a novel torsion coupling
that has been shown to predict effects inconsistent with the results of experi-
mental tests of the weak equivalence principle.

2.3 The Kostelecky Formalism

String theory has the potential to provide a quantum theory of gravity that
is unified with other fundamental theories of matter and interactions. Recently
Colladay and Kostelecky have introduced a framework for treating the possi-
bility of spontaneous breakdown of Lorentz symmetry in the context of string
theory [31,32]. While somewhat different from the sources of preferred–frame
effects considered to this point, these string induced effects are considered here
because they lead to modifications of the Dirac and Maxwell equations like those
considered in the next subsection.

2.4 Formalisms Based on Matter–Field Equations of Motion

The effects an external gravitational field on the dynamics of matter fields can
be dealt with at the level of equations of motion rather than Lagrangians. A
formalism based on forms of the equations of motion has the advantage of directly
addressing the following natural requirements one would demand of the dynamics
of any quantum field (i) deterministic evolution, (ii) the superposition principle,
(iii) a finite propagation speed (whose maximum value, since it need not be
isotropic, we call cD) and (iv) the conservation of probability.
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The equations governing the motion of a Dirac field which satisfy these re-
quirements are a first–order hyperbolic system of the form

0 = iγ̃µ∂µϕ+Mϕ , (7)

or, in 3 + 1–form (µ̂ = 1, 2, 3)

i∂0ϕ = cDα̃µ̂c∂µ̂ϕ+ cDΓ̃ϕ+mc2Dβ̃ϕ (8)

which we call a generalized Dirac equation (α̃µ̂ = (γ̃0)−1γ̃µ̂). The matrices γ̃µ

are not assumed to define a Clifford algebra, instead they satisfy γ̃µγ̃ν + γ̃ν γ̃µ =
2gµν +Xµν where gµν = 1

4 tr(γ̃
µγ̃ν) and Xµν is a matrix. In general, M is also a

matrix. A distinctive feature of this generalized Dirac equation is that it predicts
a splitting of the null cones and mass shells. (For another modification of the
Dirac equation see [26] in this volume.)

Taking the non–relativistic limit and specifying a general position–depen-
dence of the matrices γ̃µ and M , one derives the generalized Pauli equation [27]

i
∂

∂t
ϕ = − 1

2m

(
δij − δmij

i

m
− δm̄ij

ikσ
k

m

)
∂i∂jϕ+

(
cDAi

j +
1
m

aij

)
σji∂iϕ (9)

+
[
mU(x) +C · σmU(x) + δmgijU

ij(x) + cD T · σ +mc2DB · σ
]
ϕ

where the anomalous coefficients δmij
i , δm̄

ij
ik, A

i
j , a

i
j , C, δmij

i ,B stem from those
parts of the γ̃–matrices which prevent them from defining a Clifford algebra and

from anomalous terms in the mass matrix M , for example,
δmij

i
m +

δm̄ij

ik
m σk =

1
2 (1+β)α̃(iα̃j) where β is the usual Dirac γ0 and σi are the usual Pauli matrices.
The generalized Pauli equation predicts preferred–frame and preferred–location
effects. Terms like those representing couplings between spin and the Newtonian
gravitational potential were first introduced in references [28,29] and [30].

The Pauli equation (9) is a generalization of Schroedinger equation provided
by M . Haugan’s approach [13] to the dynamics of scalar matter. As in the case
of preceding formalisms, this Pauli equation provides a basis for broad range
of experimental tests of the EEP, including experiments exploiting matter–wave
interferometry. The classical limit of the generalized Pauli equation describes the
free fall of classical spin–polarized bodies,

ai = δij∂jU +

[
δmij

i

m
+ 2

(
δm̄ij

ik

m
+ δijCk

)
Sk

]
∂jU + δij

δmgkl

m
∂jU

kl(x) .

(10)

Notice that not all of the anomalous parameters appearing in the quantum
equation (9) survive in the classical freefall acceleration. Only by considering
the evolution of the spin as well can one design experiments in the classical limit
that are sensitive to all possible anomalies.

Once a generalized Dirac equation (8) is available we can address the dynam-
ics of the electromagnetic field in an analogous way. The electromagnetic field
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can be defined operationally by considering the phase shifts in charged particle
interferometry. Assuming that the dynamics of electromagnetic fields satisfies
the same requirements as we demanded for the dynamics of the Dirac field, this
leads to generalized Maxwell equations of the form,

∂[µFνρ] = 0 , 4πjµ = λµνρσ∂νFρσ + λ̄µρσFρσ . (11)

In the case of small deviations from minimal coupling to the Riemannian space–
time metric gµν , we have λµνρσ = δµ[ρgσ]ν + δλµνρσ with small values of δλµνρσ

and λ̄µρσ. Clearly, δλµνρσ can induce anistropic propagation of light and bire-
fringence. The λ̄µρσ can also modify propagation, in some cases leading to a
damping of electromagnetic waves.

The generalized Dirac equation (8) and Maxwell equations (11) can be used
just as the corresponding equations that emerge from the THεµ–formalism or
the χg–formalism, respectively, to analyze to properties of atoms in background
gravitational fields. They do, however, encompass a wider range of nonmetric
couplings that influence spin and polarization. Consequently, they provide the
broadest possible basis for the interpretation of experimental tests of the EEP.

3 Motivations for Continued Testing of the EEP

Although all tests of the EEP, including some of remarkable precision, have
so far failed to detect any hint of a violation, recent theoretical developments
continue to suggest the EEP must be violated at some level. All approaches to
quantizing gravity and to unifying it with the other fundamental interactions
currently under study are capable of predicting such violations.

3.1 String Theory

Today, string theory is among the most promising candidate for a theory of
quantum gravity fully unified with other fundamental interactions, and it has
been shown to predict a variety of EEP violations.

For example, departures from universal free fall accelerations have been com-
puted in references [33,34]. The composition–dependent component of test–body
acceleration is estimated to be as large as a part in 1015 of the mean gravita-
tional acceleration. The proposed STEP experiment could easily detect such an
anomaly (see [6]).

String theory can also predict a time–varying fine structure constant because
of couplings to scalar (dilatonic) fields, for example, see [35].

In the latest versions of string theory, physical particles and fields are confined
to the neighborhoods of D–branes and their propagation may be affected by
recoil of the branes caused by that propagation [36]. The effect of this recoil
can be accounted for via an energy–dependent effective metric. This leads to
modifications of the Maxwell equations,

∇ ·E + ū · ∂tE = 0 ∇ ·B = 0 (12)

∇×B − (1− ū2)∂tE + ū× ∂tB + (ū ·∇)E = 0 ∇×E = −∂tB , (13)
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Fig. 1. Sources of violations of the EEP and classes of experiments or observations
that are sensitive to them.

which predict dispersive light propagation. Analogous modifications of the Dirac
equation account for the effect of brane recoil on the propagation of neutrinos
and other fermions [37],

γa∂aψ −mψ + γ0(ū ·∇)ψ = 0 . (14)

3.2 Loop Quantum Gravity

In the nonperturbative approach to quantum gravity based on observables anal-
ogous to Wilson loops, the semi–classical gravitational field is described via
expectation values in so–called “weave”states. Gambini and Pullin [9] discuss
the propagation of light through a gravitational field represented by a parity–
violating weave state and find a polarization dependence of light propagation
inconsistent with the EEP. The weave state is characterized by the length scale
L, and gives rise to effective Maxwell equations [9] of the form

∂tE = −∇×B + 2χ]P∇2B (15)

∂tB = ∇×E − 2χ]P∇2E . (16)

A corresponding effective Dirac equation [38] has the form(
iγ̃a∂a − m̃+ γ̃ab∂a∂b

)
ψ = 0 (17)

with γ̃a = γa+κ1
FP
L Ga

1+κ2
(
FP
L

)2
Ga
2+. . . , m̃ = m+λ1

FP
L M1+λ2

(
FP
L

)2
M2+. . . ,

and γ̃ab = µ1
FP
L Gab

1 +µ2
(
FP
L

)2
Gab
2 +. . . , where γa are the usual Dirac γ–matrices,
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m is the usual mass of the Dirac particle, Ga
i , Mi, and Gab

i are arbitrary matrices,
]P is the Planck length and the coefficients κi, λi and µi are of the order unity
(i = 1, 2, . . . ).

Since these field equations feature second–order spatial derivatives they are
no longer hyperbolic and clearly single out a preferred frame. In addition, note
that equation (16) modifies the homogeneous Maxwell equations, disrupting the
relationship between field and 4–vector potential!

3.3 Gauge Theories of Gravity and Other Possibilities

Gauge theories of gravity like the Poincaré gauge theory [39] that leads to a
Riemann–Cartan geometry, or the gauge theory of a linear group that leads to a
metric–affine theory [40], gives rise to additional gravitational fields like torsion
and, in the latter case, to nonmetricity. If these additional fields couple directly
to matter, they can break local Lorentz invariance by singling out a preferred
frame as well as breaking local position invariance.

In supergravity theories, which gauge the super–Poincaré group, torsion
emerges as a bilinear combination of fundamental spin–32–field, see reference [41],
for example.

Though invented long ago, Kaluza–Klein theories arise as a low–energy limits
of string theory, with all that that entails regarding the validity of the EEP, see
reference [42], for example.

Finally, we note that nonsymmetric theories of gravity, like those devised by
John Moffat, have been shown to predict departures from universal free fall and
violations of local Lorentz invariance in the electromagnetic sector [43] and [44].

4 Experimental and Observational Tests of the EEP

In principle, the outcomes of almost any experiment of observation conducted
in different gravitational environments could yield evidence of the breakdown of
the EEP. There are, however, certain classes of experiments and observations
that are sensitive to characteristic violations of the EEP revealed by analyses
within the theoretical frameworks discussed in section 2.

4.1 Tests of the Universality of Freefall

Tests with bulk matter. Experiments that search for composition–dependence
of the freefall acceleration of macroscopic samples of matter are direct tests of
the weak equivalence prinicple, one consequence of the EEP. It can be tested in
traditional Eötvös fashion using torsion balance technology as in reference [5] or
by monitoring the relative motion of freely falling bodies as in the Bremen drop
tower experiment [45] and in the proposed MICROSCOPE [46] and STEP [6]
space–based experiments. To date, the highest precision, of order 10−12, has been
achieved by torsion balance experiments, but the STEP experiment is designed
to reach a precision of 10−18.
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Equation (10) shows that macroscopic samples of spin–polarized matter may
experience different gravitational accelerations than unpolarized matter. Tor-
sion balance experiments looking for such differential accelerations have been
conducted by by Ritter, Gillies and coworkers [47,48]. They find no evidence of
new spin–dependent forces.

Tests with quantum particles. As we saw in section 2, nonmetric theories of
gravity can predict that quanta of different kinds fall with different accelerations
in a gravitational field. Historically, there has been a great deal of interest in
direct searches for such effects, especially in comparing the free fall acceleration
of particles and antiparticles.

The first test of this type was performed by Witteborn and Fairbank [49]
who tried to measure the gravitational acceleration of charged particles. A little
later, Koester [50] showed that neutrons fall with the same way as classical bulk
matter to an accuracy of a few percent. This result has been verified by means
of neutron interferometry [51].

The potential for future matter interferometry tests of the EEP seems bright.
Atomic interferometers have recently determined the gravitational acceleration
toward the Earth to a part in 109 and yield results consistent with the mea-
sured acceleration of bulk matter. Refinements of these devices are expected to
produce still more precise results and can be used to search for spin–dependent
accelerations like those in (10).

4.2 Spectroscopic and Atomic Clock Tests of the EEP

As noted in preceding sections atoms are composites of the mass–energy of nu-
cleons and electrons as well as of their electromagnetic and weak– and strong–
interaction binding energies. Nonmetric theories whose matter–gravity couplings
distinguish between these various contributions can cause not only gravitational
accelerations that differ from atom to atom but also shifts in the energy spac-
ings of atomic states that depend on an atom’s velocity through or location in
its gravitational environment. Spectroscopic and atomic clock experiments can
search directly for these kinds of preferred–frame and preferred–location effects.

In Hughes–Drever–like experiments, for example, see Ref. [52], one searches
for relative shifts between the frequencies of ground–state hyperfine transitions
depending on atomic orientation in the gravitational environment. The inter-
pretation of this type of experiment in the context of the THεµ–formalism is
discussed in reference [14]. The interpretation in the context of the test theory
of section 2.4 is discussed in reference [27].

Spectroscopic methods can also be used to search for the effects of spin–
dependent and other EEP–violating effects predicted by equation (9), for ex-
ample, see [53,27]. These techniques have been used to verify the spin–rotation
coupling [54,55] in a search for anomalous spin–couplings [56].

Atomic clock technology is a particular, refined application of spectroscopic
technique. Experiments that monitor the relative rates of different types of
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atomic clock for dependence on the clocks’ velocity through or location in a
gravitational field provide another kind of spectroscopic test of the EEP. In
essence, such tests are either tests of relativistic Doppler shifts that are sensitive
to the parameters αij in (2) or tests of gravitational redshifts that are sensitive
to the parameters βij . The difficulty of moving clocks through large changes in
gravitational potential or at speeds approaching that of light limits the precision
of such experiments. However, the Gravity Probe A experiment [57] succeeded
in imposing the constraint |βij | ≤ 10−4. A recent experiment employing trapped
Lithium atoms moving at 6.4% of the speed of light [58] was able to impose the
constraint |αij | ≤ 10−6. Atomic clock technology has also been used to constrain
EEP–violating time–dependence of the fine–structure constant [59].

4.3 EEP Tests Involving Observations of Wave Propagation

Observations of the propagation of electromagnetic waves or other fields through
a gravitational field are, in sense, a kind of experiment examing the effects of
freefall. We discuss them separately, however, because of the distinctive way in
which local effects that we think of as directly signalling violations of the EEP
are allowed to build up as waves propagate over long distances.

Departures of the form of the Maxwell equations from their usual metric
form induced by nonmetric couplings to gravity can lead to dispersive wave
propagation or birefringence. Analogous departures of the Dirac equation from
its usual metric form can also lead to dispersive propagation and make mea-
surements of the arrival times of photons and neutrinos emitted from the same
astrophysical event a test of EEP. The existence of very short duration events
like supernova explosions and gamma ray bursts in combinations with the build
up of gravitational delays over very great distances makes sharp tests possible.

Recently, limits on gravity–induced dispersion of electromagnetic wave prop-
agation have been inferred from observations of quasars and gamma ray bursters
[60]. They constrain

cγ(ω)− cγ(ω0)
cγ(ω0)

,
c+γ − c−γ

c+γ
, (18)

where cγ(ω0) is the velocity of the photon for a given frequency ω or po-
larization ±. Exploiting rapid time variation of gamma ray bursters, Schae-
fer [60] is able to to impose sharp constraints on gravity–induced dispersion,
|(cγ(ω) − cγ(ω0))/cγ(ω0)| ≤ 6 × 10−21 for ω ∼ 1018 Hz and ω0 ∼ 1019 Hz. See
also [62] for implications of such data for quantum gravity models. Data con-
straining gravity–induced differences between the speed at which photons and
neutrinos propagate are also imposed,

c±γ (ω)− c±ν (ω)

c±γ (ω)
, (19)

is also available.
Finally, observations that constrain differences between the speeds with which

light with different polarizations propagates through a gravitational field have
been analyzed [61] leading to the constraint |(c+γ − c−γ )/c

+
γ | ≤ 10−28.
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Abstract. This paper presents an overview of the current technical status of STEP,
the Satellite Test of the Equivalence Principle. STEP was originally presented as a
candidate for ESA’s M2 mission as a joint mission with NASA, and has since been
studied as an M3 candidate, and under NASA as QuickSTEP and MiniSTEP. Studies
especially during the last two years have resolved some long standing issues such as
control of helium tide, improved the mission definition and error analysis, and have
resulted in an improved baseline design which should be capable of comparing rates of
fall to an accuracy approaching 10−18.

1 Background

When two bodies are allowed to fall freely in a uniform gravitational field, they
fall with the same acceleration regardless of their composition. This perplexing
observation, known as the Universality of Free Fall, is both consequence and
proof of the Equivalence Principle (EP), the fundamental concept that inertia
and gravitational mass are the same physical property. This principle has been
confirmed in both ground–based and lunar–ranging experiments with an accu-
racy of about a part in 1012. The Satellite Test of the Equivalence Principle
(STEP) is intended to test the EP in earth orbit to an accuracy of 1 part in
1018. Rarely is it possible in science to advance in one leap the testing of an
already well–established principle by six orders of magnitude, and do so in a
range that is scientifically significant.

The Universality of Free Fall goes back in essence to Galileo’s observation
that two bodies of different composition dropped from the Leaning Tower of Pisa
fall with the same acceleration. The deep significance of this discovery was first
demonstrated by Newton. He distinguished two properties of a body, its ’weight’
and the ’quantity of matter’ in it, or as we would say, its gravitational mass mg

and inertial mass mi, and he demonstrated that Universality of Free Fall makes
the ratio mg/mi identical for all bodies regardless of composition. Even more
importantly, he emphasized that it is exactly this property that marks off gravity
from all the other forces in nature. Specifically, he pointed out that nothing like
it applies to magnetism.

The term EP was coined by Einstein in 1907 in his famous ’falling elevator’
argument. For Einstein, Equivalence was a more far–reaching concept than sim-
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ply the Universality of Free Fall. His conjecture was that not just falling bodies
but all the laws of physics respond in the same way to either a gravitational ac-
celeration or an inertial acceleration. He made the EP the basis for his idea that
gravity is a consequence of the geometry of spacetime. Equivalence is therefore
both the historical foundation and the best–established fact of General Relativ-
ity. Hence any breakdown of Universality of Free Fall would be in fundamental
contradiction with Einstein’s theory.

General Relativity provides the theoretical basis for our present description
of the macroscopic world: the Big Bang, the cosmological expansion, the large–
scale structure of the Universe, the end points of stellar evolution, gravitational
collapse, neutron stars, black holes, gravitational waves, relativistic celestial me-
chanics of the solar system, the high–precision description of the motion of nat-
ural and artificial satellites, the definition of the international atomic time, etc.
Nevertheless, General Relativity faces two obvious problems: it leaves the grav-
itational interaction apparently disconnected from the other interactions in na-
ture, and it resists all traditional attempts at quantization. Historically, numer-
ous alternative theories of gravity, have been proposed, including the Kaluza–
Klein–Jordan theory, Brans–Dicke theory, Fierz–Brans–Dicke theory, and others,
all of which predict violations of Equivalence at some level. Modern theories, in-
cluding the Standard Model and string theory, either have internal deficiencies
which require new fields to resolve —leading to a violation of Equivalence —
or predict new fields such as the dilaton of the order of the strength of gravity,
with the same result. Damour and Polyakov [1] devised a mechanism in which
the dilaton field is attracted toward values that nearly decouple from matter,
resulting in the prediction of an EP violation in the range between 10−14 and
10−23, much of which is accessible to STEP.

Historically, there have been four important methods of testing Equivalence:
(1) Galileo’s free fall method, (2) Newton’s pendulum method, (3) Newton’s
celestial method (using observations either of the earth–moon system or of the
moons of Jupiter in the sun’s field), (4) Eötvös’s torsion–balance method. Curi-
ously, the pendulum test, originally the most precise, has been the least satisfac-
tory. The best was H.H. Potter’s in 1926, who obtained an accuracy of a part in
106. Modern free fall experiments by groups from the US, Italy, and Japan give
results between 1 and 3 parts in 1010. Much the most accurate tests have been by
torsion–balance experiments and the celestial method. The best torsion–balance
results to date by Adelberger et al. have reached 2.4 parts in 1012 for a variety
of test bodies. The celestial method was refined by Laplace in 1798 and then
dramatically reinvented in the 1960s in the context of lunar laser–ranging. Its
current limit reported by Dickey et al. is 5 parts in 1013.

STEP returns to what is essentially Galileo’s free fall method, without the
sudden stop at the end, rather than attempting to orbit a torsion balance. The
reason for this choice is in the disturbing effect of gravity gradients on the ex-
periment. Ever since the work of Roll, Krotkov, and Dicke (and to some extent
since Eötvös) it has been recognized that the two dominant practical limitations
on torsion–balance experiments are seismic disturbance and the effects of grav-
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ity gradients on the mass moments of the balance. In STEP, the seismic effects
are greatly reduced in comparison with ground–based experiments through the
use of a drag–free satellite. The gravity gradient effects remain; with a torsion
balance, they would overwhelm the experiment. Already in the ground–based
tests the experimenters have had to summon up very considerable ingenuity to
reduce gravity gradient disturbances. To advance the precision six more orders
of magnitude another approach has to be found.

The approach used in STEP depends on recognizing that gravity gradient
effects enter the experiment in two ways, disturbances originating in the space-
craft and disturbances originating in gradients from the earth’s gravity. In STEP
it is possible to exploit the earth–gradient effects to our advantage. With two
nearly concentric test masses in free fall, the earth–gradients produce a differ-
ence in acceleration, doubly periodic in the orbit, from which the displacement
between the mass centers can be determined. The masses can be centered on
each other very accurately using this acceleration as an error signal. The differ-
ential acceleration measurement is then insensitive to the earth’s gradient, and
even more important, it is insensitive to first–order gradient disturbances from
the spacecraft. One disturbing gravity gradient effect has been used to eliminate
both.

2 STEP Concepts

The simplest concept of STEP is Galileo’s leaning tower experiment, with the
difference that the test masses fall all the way around the Earth (Fig.1). If there
is a difference in acceleration, the masses will go into separate orbits, and over
short times they will separate in proportion to the square of the time of fall.
For times of the order of one orbit or more, they tend to return periodically
to their initial positions, with an added secular drift. The net gain is as if the
experiment were done from a tower several thousand kilometers high, with the
added advantages that the experiment repeats periodically and is performed in
a relatively benign environment.

A practical difficulty with a tower experiment is releasing the masses without
disturbance, at exactly the same height and exactly the same instant. This is
overcome in STEP by observing the difference in the masses’ motion. If the
masses do not start from exactly the same initial conditions, they will likewise
follow different orbits, but this difference is readily distinguishable from an EP
violation by being at twice the frequency. This gravity gradient acceleration is
used to precisely center the masses on one another, as described below. The
STEP test masses are made in the shape of hollow cylinders so that one fits
inside the other. This permits their centers of gravity to be precisely aligned,
eliminating first order disturbances from gravity gradients which would result
from miscentering.

Ambiguities in the measurement would result if the masses were allowed to
move freely in all degrees of freedom. In a practical experiment the masses are
not completely free, but are constrained to move along a line, the sensitive direc-
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Fig. 1. Concept of STEP

tion, which coincides with the cylinder axis. Superconducting magnetic bearings
with exceptional stability and extremely low losses provide the constraint mech-
anism. The only constraint along the sensitive direction comes from the position
measurement. This gives the masses periods of the order of 1000 seconds, slightly
reducing the amplitude of motion expected from a violation.

The position measurement is made by SQUID magnetometers which precisely
measure currents from sensing coils near each test mass. The sensor makes a
differential measurement between pairs of masses which is not much disturbed
by satellite motion. Radial and angular vibrational modes of the masses are
monitored by supplemental electrodes surrounding each test mass, which are
also used to manipulate the masses by small applied voltages, and to measure
their electrical charge.

Air drag would seriously degrade the STEP measurement (as in Galileo’s
experiment) if it were not compensated by a “drag–free” controller for the satel-
lite. The motion of the satellite in response to drag is measured relative to the
test masses, which are protected from the external drag by the satellite itself. A
servomechanism fires small linear thrusters to correct the motion, cancelling the
effect of the external drag or other disturbance. Reaction mass comes from boiloff
of the liquid helium used to refrigerate the experiment, which would otherwise
be yet another disturbance.

In orbit most disturbances tend to recur at the frequency of the orbit and its
harmonics. The characteristic signature of a violation occurs at orbit frequency
unless the satellite is rotated. In a rotating satellite, the frequency of the violation
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signal is at the difference frequency between the orbit and rotation frequency of
the satellite. STEP uses this fact to separate any EP violation from most external
disturbances. Some disturbances may track the signal because they also depend
on this difference frequency. We have prepared a program of measurements which
allows identification of these systematic disturbances by measuring at different
rotation frequencies and with varied experimental conditions. Details of some of
these measurement procedures are below.

3 STEP Instrument Configuration

The STEP instrument comprises four differential accelerometers, which will be
operated simultaneously to maximize the quantity and quality of the data re-
turned. These accelerometers operate at a nominal temperature of approximately
2 K. Each accelerometer contains two cylindrical test masses which are con-
strained from moving radially by superconducting magnetic bearings that leave
them free to move along the axis of the instrument. Motion along the cylinder
axis is measured precisely by SQUID magnetometers, and a capacitance pickoff
measures motion in all degrees of freedom at lower resolution. Magnetic force
from the SQUID sensing coils constrains the masses in the axial direction. The
SQUID outputs measure both differential mode acceleration and common mode
acceleration along the cylinder axis. The masses can be manipulated by voltages
applied to capacitance sensor electrodes surrounding them. The charge on the
masses can be estimated from the response of the masses to these voltages, and
it can be controlled by an ultraviolet discharging mechanism. The masses will
be caged during launch by a hydraulic actuator, similar to the GP-B caging
mechanism, using pressurized liquid helium as the working fluid.

Each differential accelerometer (Fig.2) contains two concentric test masses
with cylindrical symmetry, each coated with a thin film of superconductor, which
are independently constrained by superconducting magnetic bearings and which
move freely along the symmetry axis. The “belted–cylinder” shapes of the test
masses are picked to minimize higher order gravitational coupling to possibly
moving masses in the satellite; for example each mass has the same moment of
inertia about any axis. This makes the masses respond to gravity like a sphere
to sixth order.

The SQUID displacement sensors will be able to detect displacements corre-
sponding to about 3 × 10−19 g of differential acceleration in an averaging time
of about 20 orbits. SQUIDs which measure the common mode will be sensitive
to about 1× 10−18 g over the same time span. Additional details of the SQUIDs
are below.

The test masses must be prevented from moving in other than the sensi-
tive direction to avoid ambiguity in the acceleration being measured; the sense
coils necessarily have some response to motion in other modes than along the
cylinder axis. Superconducting magnetic bearings perform this function. A me-
ander pattern niobium circuit on a quartz cylinder provides the maximum radial
constraint of each test mass with minimum force along the sensitive axis. This
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Fig. 2. STEP Accelerometer

type of circuit produces stiff radical force on the test mass with no net magnetic
moment to disturb the SQUID. These circuits are divided in quadrants to allow
adjustment of the test masses’ center of mass positions during setup.

The accelerometer configuration (Fig.3) is best described by reference to
spacecraft coordinates which have X and Y axes in the plane of the orbit and
the Z axis roughly toward the Sun. The accelerometers have their sensitive axes
alternately along the X and Y directions, and are stacked along the Z axis. They
will be separated by about 15 cm in the Z direction. A quartz block supports
and aligns the accelerometers and associated parts in this configuration. This
configuration allows all the accelerometers to be centered on the roll axis of the
satellite which is normally horizontal and perpendicular to the in–track direction.

In this attitude (Fig.4) the accelerometers can be operated simultaneously
with minimum disturbance from the Earth’s gravity gradient. Attitude errors
will be estimated by using the common mode of the accelerometers to measure
the Earth’s gradient, and used to orient the satellite. This ensures that any
disturbance from the Earth’s gradient will be minimized.

The STEP accelerometers are contained in a dewar, part of a “drag–free”
satellite (Fig.5) which completely surrounds the entire instrument, protecting
it from disturbances such as air drag, magnetic field, and solar pressure. The
satellite will follow the masses by using linear thrusters which compensate for
the drag and cause the satellite to precisely follow the masses. The satellite will
include a radiation sensor to improve the estimate of the masses’ charging rate,
an external magnetic field sensor, electronics to control the payload, a superfluid
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Fig. 3. Quartz Block Concept

helium dewar incorporating a superconducting magnetic shield and ultrahigh
vacuum chamber that surrounds the instrument, communications equipment,
power supply, computer, and other support equipment.

The essential requirement of the design is to eliminate all disturbances that
could imitate the signal of a difference in rate of fall. The inherent stability and
low losses in superconductors reduce the intrinsic sensor noise. Superconducting
shielding eliminates external magnetic and electrical disturbances. Likewise the
very low temperature (∼ 2 K), temperature stability and uniformity (< 0.5
mK per orbit), and pressure (< 10−14 torr) reduce most thermal disturbances
to insignificant levels. The shapes of the test masses are chosen to minimize
disturbing gravity forces from the satellite, and the masses will be centered
within 10−10 m to remove the effect of the Earth’s gravity gradient. A charge
control system reduces disturbances from particle radiation and the resultant
electrical charging.

Active drag compensation (“Drag Free Control”) is required to reduce satel-
lite acceleration by seven orders of magnitude within the measurement band-
width. The helium gas boiled off from the cryostat, which is otherwise a distur-
bance, is used as the propellant. This gas is vented through continuously variable
thrusters developed for the GP-B program. Temperature control of the dewar is
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Fig. 4. STEP Satellite Concept

also maintained by the drag free system which will “null–dump” excess helium
for cooling without changing the net thrust. A sun–synchronous orbit, about 500
km high, minimizes thermal changes to the satellite.

To distinguish a EP violation from most remaining disturbances, the satel-
lite must rotate about an axis (the spacecraft Z–axis) normal to a plane parallel
to the sensitive directions (or cylinder axis) of the accelerometers (Fig.5). The
rotation axis must be horizontal to prevent the accelerometers being disturbed
by common–mode gravity gradient accelerations from the Earth. The EP sig-
nal appears at the difference in frequency between the orbit frequency and the
rotation frequency. The rotation frequency will be changed between measure-
ments to move the signal frequency away from fixed frequency disturbances.
The satellite’s rotation axis and attitude will be chosen and controlled to mini-
mize disturbances from the Earth’s gravity gradients, by observation of the test
masses. Experimental parameters, for example the electric charge on the test
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Fig. 5. STEP Orientation and Coordinate Systems

mass, or the center of mass displacement, can be varied to distinguish a possible
violation from systematic disturbances.

Test Mass Choice

Extensive discussions have led to a baseline design choice of three materials,
Pt-Ir, Nb, Be, in a cyclic condition, with the Pt-Ir/Be pair duplicated in an ac-
celerometer with somewhat different design. This choice presumes that sensitive
comparisons of two materials will be possible only within a single differential
accelerometer, and that materials in different accelerometers cannot be directly
compared. The choice of test mass materials was made to maximize information
return. There is a tradeoff between two competing ideas, first to test as many
different materials as possible, so as not to miss anything, and second to make
certain that anything measured is a real effect. The choice is complicated by
issues of manufacturability, that is, there are only a limited number of scien-
tifically interesting materials which can be made into a test mass. Uncertainty
about what might cause an EP violation suggests testing a multiplicity of mate-
rials. From this viewpoint a number of materials should be chosen from the low,
middle and high portions of the periodic table. Though theoretical ideas are at
present barely suggestive, it is expected that those properties which might lead
to an EP violation will vary more or less smoothly across the periodic table; for
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example mass deficit or neutron number. It is probably not too critical which
ones are chosen, so long as they have linearly independent properties.

Testing whether a measured result is real or spurious involves both repetition
of the experiment (to test whether the result is accidental) and variation of ex-
perimental conditions (to test that the result is not a systematic effect). Ideally
one would like to test the same materials under many different conditions. In
that case, if the result is unchanged, it is clear that the differing conditions have
nothing to do with the outcome. This suggests testing a minimum number of
materials very carefully. An important verification technique to use with mul-
tiple materials is the cyclic condition, in which the total acceleration difference
between three pairs of masses AB, BC, CA must add to zero. The baseline choice
shown in Table 1 incorporates a cyclic condition and the duplication of a pair of
materials with a different accelerometer design. This baseline test–mass scheme

Table 1. STEP Satellite Roll Rates

Inner mass density Outer mass density mass
material (g/cm3) material (g/cm3) ratio

Pt/Ir 21.68 Nb 9.57 3.97
Nb 9.57 Be 1.84 1.73

Pt/Ir 21.68 Be 1.84 0.76
Pt/Ir 21.68 Be 1.84 0.76

incorporates two model–independent validity checks: 1) ab, bc, ac; and 2) ab,
(ab)’. The prime indicates that this accelerometer will include certain variations
in experimental parameters as a further check for systematic effects. For exam-
ple the ab and (ab)’ accelerometers will be orientated at 90◦ relative to each
other and will be physically separated by the length of the quartz block support
structure. Radial and longitudinal spring constants will be made non–identical
by setting bearing and readout circuit currents. Similarly, electrostatic position
sensing voltages and electrode gap spacings will also differ.

We have verified through discussions with Speedring Inc. and BIPM that
the three chosen materials can be machined to sub–micron tolerances. Their
cryogenic properties are known sufficiently well to enable mechanical design and
thermal analysis to proceed. We have conducted preliminary studies of their Nb
thin film coating properties and foresee no obstacles in this regard.

3.1 Test Mass Shapes and Configuration

To ensure that non–uniform gravitational fields do not cause differences in accel-
eration of the test masses, their centers of mass must coincide, and their shapes
and dimensions must be chosen so as to minimize the coupling of higher order
gravitational gradients to each mass. This approach greatly reduces spurious
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Fig. 6. Basic Position Sensing Circuit

gravitational effects due to helium tides in spacecraft’s dewar, deformation of
the spacecraft, etc. An ideal shape for the masses would be spherical, but this
gives no good way to measure the inner mass, and although spheres can be very
accurately made, any gravitational advantage is most likely nullified by density
variations. The STEP test masses will be belted cylinders with their dimensions
chosen to make the masses act as much like spheres as possible gravitationally.
Where it is not possible to give the masses zero multipole moments, correspond-
ing moments of inner and outer masses will be made identical. The shapes of the
2 masses in each pair separately make the quadrupole, hexadecapole, and 64–
pole terms close to zero, while minimising the 256–pole gravitational coupling
term [4]. Therefore the masses ‘look like’ gravitational monopoles to a few ppm
for gravitational sources as close as 250 mm away [5].

3.2 Differential Accelerometer Operation

The differential accelerometers each contain a pair of test masses constrained by
magnetic springs. The differential displacement along their common ’sensitive’
axis is measured to very high precision (≈ 7 × 10−14 m in 105 s integration
time) using superconducting pick–up coils connected to SQUID detectors. The
differential displacement is therefore a measure of the difference in acceleration
experienced by the masses in each pair. Each mass is guided along the sensitive
axis by a superconducting magnetic bearing. Its equilibrium position may be
trimmed by adjustment of supercurrents in the bearings and SQUID coils, or by
a voltage applied to surrounding electrodes.

SQUIDs (Superconducting Quantum Interference Devices) are chosen for
STEP because of their extremely high sensitivity and low intrinsic noise (ap-
prox. 2.6 × 10−28 J/Hz at the signal frequency). An ordinary non–differential
accelerometer is made by placing one test mass between two superconducting
pickup coils wired in series, with a persistent supercurrent flowing around the cir-
cuit (Fig.6). This circuit is the superconducting equivalent of a common device,
the linear variable displacement transformer (LVDT).
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Movement of the superconductor–coated test mass towards one pickup coil,
and away from the other one, changes the inductance values. Because of flux
conservation, this forces a current through a third coil in parallel with the first
two. This signal current is roughly proportional to the displacement, and the
third coil is the input coil of a SQUID. STEP’s differential accelerometers use
two such circuits—one for each test mass—connected back–to–back, so that
they share the same SQUID input coil (Fig.7). With proper setup currents, the
SQUID will sense a current proportional to the difference in displacement of the
masses (and hence to their differential acceleration).

The accelerometers comprising each test mass pair must be balanced against
each other to give a true differential signal. This is done by adjusting the magni-
tude of their respective circulating supercurrents. A supercurrent can be changed
by destroying the superconductivity of part of the circuit by a heater and then
restoring it after the current is changed, or indirectly by coupling to a transformer
which incorporates a superconducting loop as its primary. These are standard
cryogenic techniques which can be performed with high precision. The satel-
lite will be accelerated to provide a dither acceleration, and the supercurrents
adjusted to minimize the resulting differential mode response. The differential
accelerometers are designed to have have excellent rejection of common–mode
accelerations combined with exceptionally high sensitivity to differential accel-
erations. Moreover, they will remain balanced due to the unparalleled stability
of the persistent supercurrents.

As previously mentioned, the test masses must be prevented from moving in
other than the sensitive direction to avoid ambiguity in the acceleration being
measured. The superconducting bearing circuits which constrain the masses are
divided in quadrants to allow adjustment of the center of mass positions. This
setup adjustment prevents coupling of first order gravity gradient forces into the
measurement.

The center of mass offset is measured using the gravity gradient disturbance
itself as an error signal, and the bearings are actively adjusted until the distur-
bance vanishes. The extremely stable supercurrent used for the adjustment is

test mass
M

test mass
M

SQUID

L1 L3 L2 L4 L5

Fig. 7. Differential Position Sensing Circuit
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“frozen” at the end of this setup procedure and then needs no further adjust-
ment. The controller for this adjustment will be integrated with the drag–free
controller for the satellite. The residual disturbance from drag–free control lim-
its the measurement accuracy of the centering to perhaps 3× 10−13 m, and will
cause the masses to vibrate with an amplitude about 1.3 × 10−10 m, averaged
over one signal period. This amplitude is nearly eight times smaller than the re-
quirement of 10−9 m, and is at the ∼ 0.01 Hz resonant frequency of the bearing,
well removed from the signal frequency.

It will be necessary to control the masses’ motion both before and after
the magnetic bearing setup procedure. This manipulation will be done by an
electrostatic positioning system. Several electrodes will be arranged around each
test mass, and control voltages applied depending on its position and velocity.
The positioning system will also capacitively measure the position of each test
mass in six degrees of freedom, plus a charge measurement. During initialization
procedures the electrostatic system controls the position of the mass (which must
be fixed for SQUID setup) and provides positioning information to the drag free
controller in those modes that the SQUID does not measure. During instrument
operation the electrostatic system provides two additional functions. It provides
damping of the motion of the test masses, thereby reducing intermode coupling.
It also performs charge estimation and control, to reduce disturbances from
electric charging during SAA passages. The charge measurement is conceptually
made by applying a dither voltage to which the mass responds only if it is
charged. This measurement is then used to drive the charge to zero in an active
control loop. A UV light source, derived from GP-B heritage, allows charge to
be moved on or off the mass without contacting it.

During launch the test masses will be held securely by a specially designed
caging mechanism which will disengage before measurements begin, but can be
re–engaged at any time should the masses need to be clamped for any reason.

4 Experiment Operations and Timeline

We have produced a detailed description of the operations sequence and schedule
for the experiment, which is summarized below and in Fig.8. Beyond the setup
and calibration stage of the experiment, a completely predetermined schedule of
measurement operations for STEP is not possible. A flexible operations strategy
is necessary to meet contingencies. This is because the optimum schedule, and
which operations are to be performed, depends on the conditions actually found
in orbit. These conditions cannot be known in advance because they depend
on things such as the degree to which requirements have been met, environ-
mental factors which cannot be predicted (or have never been measured), and
possibly overlooked error sources. There is not time enough in the mission to
perform all possible measurements, so a selection is necessary based on the con-
ditions actually discovered in orbit. The strategy is therefore to prepare a set of
measurements to be performed when predetermined conditions are met. Once
preliminary data on the actual conditions are available, these “canned” proce-
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dures will be used as needed to identify and calibrate possible systematic effects
and optimize the system.

The rough outline of the experiment is therefore as follows. After an initial
period of satellite commissioning, the drag free system is initialized in a “coarse
drag–free” mode using capacitance sensor measurements for the reference. The
differential accelerometers are initialized and calibrated. Really precise calibra-
tion is not generally required for STEP; the primary calibration reference is the
capacitance sensor, which depends on the dimensional stability of the electrodes
for its accuracy. This and the SQUID sensor will be precalibrated to < 1% on
the ground. The accelerometers will be launched in a shutdown condition; the
SQUIDs will be set up and recalibrated in orbit by reference to the capacitance
sensor. The setups which need to be precise are the common mode rejection ad-
justment and the center of mass adjustment. These adjust internal ratios rather
than absolute values and are self referenced by nulling or minimizing an output.

The common mode rejection adjustment changes the scale factors for each
mass in a given differential accelerometer. The satellite will be accelerated at
a known low frequency (much less than the longitudinal frequency of the test
masses) to provide a dither signal in the sensitive direction. The supercurrents
will be adjusted to produce a null response to this acceleration in the differential
mode. The supercurrents can be changed in a few seconds, but the time required
for the adjustment will need to be at least several times the test mass period
(∼1000 seconds) to allow the system to settle. All the differential accelerometers
can be adjusted simultaneously, so this adjustment can be completed and checked
in a few (2–5) days. Following the differential mode adjustment the satellite will
be accelerated at right angles to the sensitive direction, to calibrate the coupling
due to accelerometer misalignment. If this coupling is known to a few percent
or better, it can be used in a software correction to improve the overall common
mode rejection. This completes the adjustment and calibration of the common
mode rejection ratio.

The procedure for centering the test masses on one another was described
briefly above. In summary the gravity gradient acceleration in the differential
mode is used as an error signal for the center of mass displacement. The center of
mass displacement is adjusted by changes to supercurrents, and once the masses’
equilibrium positions are centered on each other, they should remain centered.
The masses are damped in the radial modes by the electrostatic positioning
system, and are excited only by residual spacecraft motion, so that the masses
never move very far from their equilibrium positions. No on–orbit calibration is
necessary since both error signal and displacement go to zero together.

An initial measurement is made with the satellite inertially oriented. This is
a reference measurement which can be taken immediately after setup. The signal
frequency is equal to the orbit frequency which contains many disturbances that
may mask an EP signal. The information is primarily for characterization of the
disturbances, so that it will be possible to make a rational choice of the roll rate
for subsequent measurements.
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Fig. 8. STEP Mission Timeline

The EP signal appears at the difference frequency between the roll and orbit
frequencies. Its phase is such that zero amplitude occurs when an accelerometer’s
sensitive axis is horizontal. Its amplitude (measured as an acceleration) is inde-
pendent of roll rate. For an EP measurement, data will be taken for periods of
20,000 to 500,000 seconds, and at roll rates from −3 to +3 times orbit frequency
(∼ 1.8×10−4Hz), or at signal frequency from −2 to +4 times orbit rate. EP mea-
surements will be repeated with different roll rates and phases throughout the
mission, at rates which avoid the frequencies of large disturbances. These tests
will be intermixed with tests for systematic disturbances, which are discussed in
the next section.

When the remaining helium is down to about ten day’s supply, the experi-
ment will enter a post–measurement phase which remeasures some of the items
measured during calibration to see if they have changed, and adds a few tests
which could not be done earlier because they might permanently change the
setup. In the terminal phase, after the helium is gone, the satellite loses drag–
free and attitude control and rapidly warms to a temperature where no further
tests are possible.

We estimate about a year will be necessary to completely analyze the data.
The analysis will be performed by two teams of scientists in Europe and America.
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4.1 Test for Systematic Effects

Whether or not there is an EP signal it will be necessary to make tests that
give confidence in the results. There are two possibilities for judging whether an
apparent EP signal may be due to a disturbance, first by attempting to make
the disturbance bigger, so that its effect becomes clear, or second, if this is not
possible, measuring the disturbance and correlating it with the measurement
output. In some cases the effect of a disturbance may be defined well enough
to allow it to be calibrated out of the data, possibly giving an improvement in
performance.

We can design tests for disturbances that can be anticipated, such as tem-
perature change. This includes most if not all of the disturbances in the error
analysis. The plan is twofold: we will have a prepared list of tests to be performed
if given conditions exist, and in any case we will perform as many different tests
as the schedule allows. Decisions on which tests to perform must be made in real
time, picking from the prepared lists. In all cases as many experiment variables
as possible should be measured simultaneously.

What follows is a selection from the list of tests we can perform. Except
in case of the bearing force determinations (which map background forces) the
tests are performed like an EP measurement, but with variation of one or more
of the indicated parameters. That is, the indicated parameters are changed but
the rest of the procedure is identical to an EP measurement. Note that many of
these test for an entire class of disturbance, rather than any specific one.

Bearing Force Determination

The force from the magnetic bearings and environment can produce disturbances
by varying in time, and by strong nonlinearities converting the drag free resid-
ual into the measurement bandwidth. The force is measured by balancing the
unknown forces from the bearings and environment against the electrostatic po-
sitioning system. Magnetic and electric forces can be separated to a large extent
by varying the bearing setup currents and charge on the mass. The purpose of
this measurement is to verify that the forces on the test masses meet require-
ments, to measure how much of the total force is magnetic or electric, and to see
if the forces have changed. This measurement should be made at least once at
the beginning of the mission and again at the end. It should be repeated if there
is any evidence of change, for example if the masses’ resonant periods change for
some reason.

Gravity Gradient Sensitivity Measurements

Gravity gradients are a source of concern because they are potentially large rela-
tive to the effect sought, and cannot be shielded. They are measured by offsetting
the mass centers of the masses or by offsetting the common mass center and cor-
relating the resulting acceleration with environmental factors. Also, comparisons
between accelerometers will provide very sensitive measures of both local and
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Earth gradients because of the long fixed baseline. These measurements test sen-
sitivity of the experiment to changes in satellite and/or earth gravity gradients.
They should be performed if there is an irreducible, significant second harmonic
component to the differential acceleration, or if correlations between the common
modes of separate accelerometers suggest that the satellite is changing shape.

Electric Charge Sensitivity Measurements

These measurements test that electrical forces are within requirements, how
much of the total force is electrical, measure how much the charge contributes
to the noise, and how much disturbance could be caused by the charging effect
of particle radiation. For these tests the charge on the mass is controlled to a
relatively large value (> 0.5 volts) and the effect on the acceleration measurement
measured. They should be performed if there is any correlation between the
differential signals and the measured residual charge or radiation dose.

Electrical Potential Sensitivity Measurements

The voltages on the sense electrodes for the electrostatic measurement and
charge control system are potentially a source of disturbance, although the elec-
trodes and measurement system are designed to minimize this. The disturbance
results from both the magnitude of the voltages and voltage noise present on
them. These tests increase the voltages and vary them while measuring the re-
sulting accelerations. These measurements should be performed at least once
during the mission.

Temperature Variation

Classically, changes in temperature are a major cause of disturbances. The in-
strument and satellite contain heaters for applying thermal gradients and chang-
ing local and global temperatures. These measurements test the coupling of
temperature to the experiment through the mechanisms of gas pressure effects,
penetration depth changes, thermal expansion, electronic drift, etc. It may not
be possible in all cases to get a clean separation of the different coupling mecha-
nisms. These measurements should be made at least once during the mission, or
if there is any correlation between measured temperatures and the differential
acceleration.

Test Mass Temperature

The masses are thermally isolated from their housings and heated by particle
radiation, so that their temperature may rise a few Kelvin during the mission
duration. We have not so far found any disturbances caused by a uniform tem-
perature elevation of the test masses; the known disturbances are driven by ther-
mal gradients at or near the signal frequency. The particle radiation is highly
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penetrating and heats the masses uniformly. The masses will have very short
thermal relaxation times of a few tens of milliseconds or less, so any thermal
gradients caused by this small uniform heat input will be both insignificant and
transient. Because the temperature of the masses is not directly monitored, if
a disturbance from this source is suspected, the masses can be recaged and the
temperature rise of the caging mechanism measured to estimate the temperature
of the masses. A direct noncontacting measurement of the mass temperature,
although of interest, is expected to be very expensive.

Satellite Motion

Motion of the satellite relative to the test masses is a major determinant of
the performance of the experiment, since it directly determines the ultimate
limit to all displacement measurements and directly affects many subsystems.
Indirect effects include gravitational coupling of the satellite to the differential
measurement. Two types of satellite motion disturbance may be distinguished.
The most important motion disturbance is at low frequencies (< 2 Hz), which
is due to the error in response of the drag free system to variations in residual
drag. Higher frequency acoustic noise might be generated by overlooked internal
sources (monitored by a microphone) or micrometeor impacts.

Sensitivity to satellite vibration can be directly checked by applying a known
vibration with a PZT or other acoustic source. Measurements testing the masses’
coupling to satellite motion will be performed at least once at the beginning of
the mission during the common mode rejection setup. They will be repeated
after SQUID setup changes, or if there is any correlation of the differential mode
with the drag free error signal, or after changes in satellite rotation if the res-
onant frequencies of the masses differ significantly (in which case changes in
rotation affect their equilibrium positions). These measurements are made by
accelerating the satellite in a known way and measuring the resulting output
from the accelerometers. For example, the quality of common mode rejection
will be measured by accelerating the satellite at a frequency near the signal fre-
quency. The common mode will then be readjusted if required, by changing the
setup currents in the position sensors and magnetic bearings.

Other important tests related to satellite motion include switching to dif-
ferent drag free reference masses, applying bias accelerations, and changing the
form of the control law. These will measure the sensitivity of the experiment to
assumptions about the drag free control and its interaction with the environ-
ment.

Magnetic Shielding

External magnetic fields can penetrate into the instrument through flaws in the
superconducting shield. This directly affects the SQUID position sensor mea-
surement, adding a fictitious displacement to the real one. Large field leakage
can also apply forces to the test masses. We will test the quality of magnetic
shielding at least once during the mission, or if there is any correlation with the



STEP: A Status Report 231

external magnetometer output. The external field can be changed by exercising
the magnetorquers, or the SQUID outputs can be correlated with the measured
external field.

Particle Radiation

Particle radiation has three effects: charging the masses, heating them, and push-
ing them around by momentum transfer.

Measurements of the charge are planned continuously during the mission;
these measurements test the integrity and reliability of the charge estimate from
the measured dose. Charge measurements will be performed automatically as
part of the standard data set, and will be automatically compared with the
output of a radiation sensor to estimate the charge delivered by a given radia-
tion dose. This estimate will be updated continuously in a convergent feedback
loop. The effectiveness of this procedure for determining sensitivity to charging
from particle radiation can be measured by passing through the South Atlantic
Anomaly (SAA) in different orientations, which changes the shielding factor.
Note that the charge on the test masses will be systematically and deliberately
varied as part of the electric charge sensitivity measurements.

Particle radiation is highly penetrating and heats the masses uniformly. They
are highly conducting and have a significant thermal mass relative to the small
power in this source. A temperature rise of the order of 1 mK for each pass
through the SAA is expected. The effect of this was discussed in the paragraph
on test mass temperature.

Particles actually stopping in the test masses will transfer their momentum to
them, and since the proton flux may be expected to be predominantly downward,
there will be a net downward acceleration during SAA passage of the order of
10−19 m/s2. This small disturbance will be correlated with the proton flux,
and not with the signal which is at a different frequency. The corresponding
disturbance from cosmic rays is at signal frequency, but is about a thousand
times smaller.

Optical and Thermal Radiation

A UV light is used for charge control, and the momentum and heating of the
light can disturb the measurement. The sensitivity of the instrument to UV
light stability and power will be measured at least once near the beginning of
the mission.

Helium Tide

The EP experiment is extremely sensitive to disturbance from gravity gradients
from moving masses. The largest potentially movable mass in the satellite is the
superfluid liquid helium used for refrigeration. If free to move, its surface would
be excited by gravity gradients which have a harmonic relationship to the signal
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frequency, resulting in a static distortion of the order of a centimeter, and possi-
bly dynamic (wave) distortion as well. The helium is planned to be constrained
by trapping it in a foam or aerogel. This restricts the motion by surface forces
(or fountain pressure) much larger than the gravity gradients (See the results
described in Section 5). The remaining motion will cause negligible disturbance.
Constrained or not, it is important to be able to confirm that the helium is not
disturbing the accelerometers. These measurements test the sensitivity of the
instrument to motion of the liquid helium.

The amplitude of the disturbance from helium tide is expected to vary
strongly depending on the amount of helium in the dewar and its distribu-
tion. The signature of a helium tide is expected to include significant fourth and
higher harmonics of the signal frequency, and those harmonics will vary system-
atically in amplitude and phase relative to the signal frequency. This would be
accompanied by a difference in common mode acceleration between accelerom-
eters indicating a mass shift on board the satellite that doesn’t correlate with
satellite temperature.

Several sorts of tests can be performed. The first sort of test is to change the
satellite rotation frequency. Because the helium tide has a (largely unknown)
time–dependent response to Earth’s gravity gradient, this will in general in-
troduce a measureable phase and amplitude shift in the data. This response
will vary systematically with helium level, and change slowly during the mea-
surement. The next sort of tests would compare the common mode outputs of
different accelerometers. The comparison would be highly sensitive to motion of
nearby masses including helium tide. Third, introducing a static displacement
between the masses in each accelerometer will enhance the test, possibly allow-
ing some localization of the disturbance by measuring higher gradients. Finally,
tests which apply heat or thermal gradients to the helium bath may change
the distribution of helium within the constraining foam, by fountain effect, and
therefore will change the helium tide response.

Mass Dynamics

Similar to the case of satellite motion, movement of the test masses relative
to their housings can cause various disturbances. These disturbances include
calibration changes, real and apparent coupling between modes of motion, and
saturation of measurement systems. The masses’ motion will normally be elec-
tronically damped to very low amplitudes in all degrees of freedom, using the
electrostatic positioning system. A particular concern is rotation about the cylin-
der axis, which might be difficult to measure and control. We have shown that
test mass rotation can be sensed and controlled using the residual out of round-
ness of the cylinders (∼ 1 µm).

Measurements involving mass dynamics test the accelerometers’ sensitivity
to motion in modes other than the sensitive axis, including cross–coupling and
frequency conversion. The masses will be displaced and excited in different modes
by the electrostatic positioning system and magnetic bearings, while observing
the accelerometer outputs.
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5 Error Analysis and Mission Tradeoffs

STEP is necessarily a highly optimized experiment with many tradeoffs, and
sections cannot simply be split off for separate analysis without the risk of in-
consistency. Most error sources were evaluated analytically for the purpose of
setting requirements in the original STEP Science Requirements Document (May
1990) and the analysis has been continually updated to the present day in an
increasingly systematic and consistent way.

Early error calculations, sometimes performed by independent workers, tend-
ed to use independent assumptions for each error source resulting in requirements
which were not entirely self–consistent. To eliminate these inconsistencies in as-
sumptions and requirements we have developed a computer program which au-
tomatically calculates the errors and resulting tradeoffs from consistent starting
assumptions.

The starting point for all the computer programs is the STEP Error Anal-
ysis, a text document actively maintained in our database. The STEP Error
Analysis includes estimates of specific disturbances to the masses in the gen-
eral categories of thermal noise, gas pressure forces, electrical forces, magnetic
forces, gravitational forces, radiation pressure, and vibration. It also includes
estimates of disturbances to the measurement system, including measurement
noise, changes to the superconductors, and thermal and mechanical stability.
Specific disturbances considered include electric potentials in the housing sur-
rounding the mass (including patch effect), the radiometer effect, losses from
eddy current damping, gravitational coupling from helium tide, drag free resid-
ual vibration coupled to the differential mode, SQUID noise, penetration depth
changes in superconductors, and momentum transfer from penetrating particle
radiation. The Error Analysis also lists interactions and tradeoffs within the
experiment.

We also maintain an error analysis program, broadly based on the STEP
Error Analysis. The goal is to embody a model of the experiment and appa-
ratus (especially including tradeoffs) as a self–consistent whole. The extensive
model of the accelerometers automatically calculates the common mode balance
procedure, and the drag free and charge control laws are physically realizable
models which will be updated with the actual control laws when those are fi-
nalized. The program systematically evaluates the known errors starting from
a relatively small and consistent set of low level assumptions, and because it
efficiently and explicitly incorporates the major tradeoffs it can be used to set
requirements. Many if not most experiment parameters are explicitly dependent
on other parameters or requirements; some simple examples are the mass of a
test body from its dimensions and material, or the signal frequency from orbit
height and satellite spin rate, or less directly the common mode rejection ratio
from the setup currents and coil dimensions in the SQUID position sensor. The
program automatically calculates these, preventing much of the inconsistency
that results from independent assumptions. Two examples of the utility of this
approach are given below, for the effects of orbit height and satellite rotation on
the experiment.
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5.1 Orbit Height Effects in the Model

Figs. 9 and 10 show sample results for two different orbit heights, 500 and 400
km respectively, with no other changes. Fig.9 is close to the STEP baseline mis-
sion. In this example the performance is dominated by two noise noise sources,
SQUID noise and Nyquist noise. SQUID noise is the inherent flux noise of the
SQUID sensor, converted into an equivalent acceleration. Nyquist noise is the
fundamental thermal noise limit, likewise converted.

Some differences due to orbit height are readily apparent, especially in the
disturbance “dynamic CM offset” disturbance which is greatly increased at the
lower altitude relative to the other disturbances. Vibrations of the test masses
about their equilibrium positions result in changing center of mass offsets that
can couple gravity gradients into the signal frequency. These vibrations are
caused by residual satellite motion. The drag free residual sensed in the dif-
ferential mode of the accelerometers (drag free residual in diff. mode) is a direct
limitation to the mass centering performance, and this residual is increased by
the overall increase in drag in the lower orbit. Consequently the centering system
cannot work so well in a lower orbit, and the disturbance increases rapidly with
the centering error. There is a similar cause for the much smaller increase in
the disturbance from electrical charge. The charge control system’s performance
(Electric charge) is also determined by the overall drag free residual, so that the
charge cannot be controlled so well in a low orbit. This cancels the expectation
that the charging problem would be less because the radiation decreases in lower
orbits. The smallest charge that can be measured depends on the residual accel-
eration noise from drag, and the charge cannot be controlled better than it can
be measured. In the model used for the radiation flux and its interaction with
the test masses, the increase in drag noise is proportionally somewhat larger
than the decrease in the disturbing flux, within the range of likely altitudes for
STEP.

5.2 Satellite Rotation and EP Signal Detection in the Error Model

The ability to shift the signal frequency away from the frequency of disturbances
is extremely important. Many disturbances, for example that due to particle
radiation, occur at the frequency of the orbit or its harmonics. Moving the signal
away from these frequencies may result in a significant improvement in signal to
noise.

The disturbances of most concern occur at the signal frequency, the differ-
ence between orbit rate and rotation rate. For these disturbances, the rotation
rate cannot have a direct effect because the disturbance tracks it. It may hap-
pen that indirect effects of rotation are important. One such case is when the
centrifugal force of rotation is comparable to the spring constant restraining the
test masses. Centrifugal force is a direct effect of rotation, and adds directly
to the spring constants. However, the spring constants are determined by the
set–up conditions, which tend to cancel the direct effects of the rotation. It is
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Fig. 9. Typical Errors for a 500 km orbit. Noise sources known to be incoherent, e.g.
thermal noise, are converted to an expectation value at the signal frequency by RMS
averaging. Coherent errors (e.g. some temperature driven effects) are calculated at
signal frequency. A worst case estimate is made by simply summing the errors. For
a statistical estimate, the errors are combined in an RMS sense. The bar chart is
automatically rescaled in proportion to the total disturbance.

the changed set–up conditions which affect the sensitivity of the SQUID sensors
(and the experiment) rather than the rotation directly.

The centrifugal force from the rotation has a tendency to destabilize the
magnetic springs (from the position sensor) that hold the masses in place. This
is the reason for holding the rotation to less than three times orbit rate; the
springs are required to give a period of 1500 seconds or less to provide some
margin of stability. In the frame of the satellite the centrifugal force is constant
except possibly for small changes due to variation of rotation rate. The constant
centrifugal force is easy to distinguish from EP signals. The centrifugal force
disturbance due to changes in rotation rate w is (ωδ(ω)−∆X+ω2δ(∆X))Cmrr,
where ∆X is the distance from rotation axis and δ() indicates the variation in
a quantity. δ(∆X) represents the amplitude of mass motion about ∆X. Varia-
tions in rotation rate δ(ω) change the centrifugal force for both masses, and are
reduced in the differential mode by the common mode rejection ratio Cmrr. For
ω = −0.001 rad/s (≈ -orbit frequency), δ(ω) ≈ 0.01ω, ∆X ≈ 7.5× 10−9 m, and
δ(∆X) ≈ 1.3× 10−10 m at signal frequency, this disturbance is about 3× 10−21

m/s2.
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Fig. 10. Typical Errors for a 400 km Orbit

The drag–free and attitude control system controls all six degrees of free-
dom, including rotation. If uncontrolled, the satellite will rotate about some line
through its center of mass rather than about the line joining the centers of the
test masses. The attitude control system forces the satellite to rotate about the
line through the centers of the test masses (the “rotation axis”), using linear
thrusters to provide the necessary forces and torques. To do this, the system
must apply a constant thrust in the rotating frame (with some perturbation
from disturbances), directed toward the axis and proportional to the distance
between the satellite’s center of mass and the rotation axis. Enough thrust is
available for this if the satellite center of mass is within 10 cm of the rotation
axis, but some thrust must be reserved for translational control. The satellite is
reasonably symmetric about the rotation axis, and there will be a requirement
to passively trim the center of mass to within less than 1 cm of the axis. This
leaves 90% of the thrust available for translation. Lockheed Martin has facilities
for measuring the center of mass of satellites (specifically GP-B) to within 2.25
mm about the roll axis. Trimming to reduce the satellite’s products of inertia
may also be needed. These can be measured in the same facility to within 5
kg-m2.

For many disturbances, neither the rotation rate nor the signal frequency is
a direct input to the result of the error analysis, or it has a small effect. For
disturbances which depend directly on the orbit rate, the error analysis assumes



STEP: A Status Report 237

Fig. 11. Effect of Rotation Choice

they have harmonics at multiples of the orbit frequency; in many cases the
amplitudes of these harmonics can be explicitly calculated, and in the others a
conservative estimate is used. The frequency of disturbances and their harmonics
influences the choice of rotation rates, which should not be multiples of the orbit
frequency.

The expected effects of a change in rotation from −2.718 times orbit fre-
quency (the previous examples) to −2.000 times orbit frequency are shown in
Fig.11. The most apparent changes are a large increase in the disturbance from
magnetic field penetration and smaller increases in electric charge effects and the
momentum transfer from proton momentum. The magnetic field of the Earth
changes direction at twice orbital frequency in orbit. Its fourier spectrum is made
up of narrow lines at harmonics of the orbit frequency, and this particular choice
of signal frequency coincides with one of them. Note that the narrow line width
of regular disturbances such as magnetic field penetration is determined by the
observation time, while their own structure determines the relative amplitude
of their harmonics. Regular disturbances with short durations relative to the
orbit, such as proton momentum transfer, are spread out over more harmonics,
but have little energy away from multiples of the orbit frequency. Thus, small
changes away from orbit harmonic frequencies may make a large difference in a
disturbance.
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The changes in electrical disturbances are related to the regular passage
through the South Atlantic Anomaly. In this case the rotation rate of −2 times
orbit frequency means that every third passage through the anomaly comes with
the same phase. Because passage through the anomaly is short, its energy is
spread over many harmonics, and the third harmonic changes the charge in time
with the signal frequency. The relatively slow operating charge control system
cannot correct the charge quickly enough to reduce the disturbance.

A selection of possible roll rates, and reasons for selecting them or not based
on our analysis, is given in Table 2.

These two examples illustrate the importance of having an integrated model
of the full system, in understanding the results. The effect of other errors can be
similarly understood. Several of the most significant error sources are discussed
below.

Table 2. STEP Satellite Roll Rates

Ro ll Rate, ω
( u n i t s o f t h e
o r b i t al r at e, ω o )

S i gn al
F r eq u en cy
ω s  = ω o - ω

Erro r sou rces o r Exp erimen t al
ad van t ages

P u r po se Co mmen t

2 . 71 8 - 1 . 71 8 E P si gn al i s n o t an in t eger
mu l t i p l e o f ω o

E P measu r e men t mo d er at e ω s .

2 . 14 2 - 1 . 14 2 E P si gn al i s n o t an in t eger
mu l t i p l e o f ω o

E P measu r e men t r el at i vel y l o w ω s

2 . 00 0 - 1 . 00 0 E P si gn al fr eq u en cy co i n ci d es
wi t h ω o

M ay b e u sed fo r
assessin g th e l evel o f
o r b i t al fr eq u en cy
n o i se

Avo i d fo r EP measu r e men t s

1 . 33 3 - 0 . 33 3 E P si gn al h as 1 : 3 r el at io n sh i p
wi t h o r b i t al eccen t r i ci t y-
i n du ced erro r so u r ces

M ay b e u sed t o assess
t h e l evel o f o r b i t al
fr eq u en c y n o i se

Avo i d fo r EP measu r e men t s

1 . 00 0 0 EP sign al sup p r essed
(DC)

M easu r e n o i se sou r ces Al so su p p r esses er r o r s fr o m
t h er mal r ad i at i o n fr o m E ar t h
an d E arth gravi t y grad i en t s

0 . 66 7 0 . 33 3 E P si gn al h as 1 : 3 r el at io n sh i p
wi t h o r b i t al eccen t r i ci t y-
i n du ced erro r so u r ces

M ay b e u sed fo r
assessin g th e l evel o f
o r b i t al fr eq u en cy
n o i se

Avo i d fo r EP measu r e men t s

0 . 50 0 0 . 50 0 E P si gn al fr eq u en cy i s
i d en t i cal to s at el l i t e r ol l r at e
an d ½ o rb i t r at e

M ay b e u sed t o assess
erro rs tied to o rb it an d
r o l l r a t e

Avo i d fo r EP measu r e men t s

0 . 00 0 1 . 00 0 E P si gn al co in ci d es wi t h o rb i t
fr eq u en c y

M ay b e u sed t o assess
t h e l evel o f o r b i t al
fr eq u en c y n o i se

Avo i d fo r EP .
Cen t r i fu gal fo r ce d i st u r b an ces
su p p r essed .

- 0 . 41 4 1 . 41 4 E P si gn al i s n o t an in t eger
mu l t i p l e o f ω o

E P measu r e men t l o w ω s .

- 2 . 00 0 3 . 00 0 E P si gn al i s at 3 r d h ar mo n i c o f
o r b i t

As sess le vel o f
d i st u rb an ces

Avo i d fo r EP measu r e men t s

- 2 . 14 2 3 . 14 2 E P si gn al i s n o t an in t eger
mu l t i p l e o f ω o

E P measu r e men t h i gh ω s

- 2 . 71 8 3 . 71 8 E P si gn al i s n o t an in t eger
mu l t i p l e o f ω o

E P measu r e men t ver y h i gh ω s .
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SQUID Noise

A well designed experiment will be limited by sensor noise if not by a more
fundamental disturbance. This is the case in STEP, where the very tiny intrinsic
flux noise in the SQUID of 1× 10−30 J/Hz is equivalent to an acceleration noise
δa of about 5×10−13 m/s2/

√
Hz depending on setup conditions. This then is the

limit of performance of the drag free control system, which cannot distinguish
between the sensor noise and an actual drag variation. To compare the acceler-
ations of two test masses to 10−17 m/s2 in the presence of this (relatively) large
disturbance it is necessary to make a differential measurement with common
mode rejection Cmrr no bigger than 10−4. This high common mode rejection
is achieved by accurate manufacture of the accelerometers combined with the
common mode adjustment procedure previously described.

Measured STEP SQUID noise characteristics are used to model the accel-
eration sensitivity in the STEP error analysis. The transfer function relating
SQUID noise to acceleration sensitivity depends on readout circuit inductances,
inductance derivatives, circuit setup currents, and test mass masses. See [6] for
details of the derivation. The measured SQUID noise and analysis based on the
baseline instrument design yield an acceleration sensitivity that meets the resolu-
tion requirement of 2.7×10−18 ms−2 in a bandwidth of 8×10−6 Hz. Figs. 12–14
show the measured properties of GP-B SQUIDS, which are identical with the
STEP baseline choice.

The SQUID noise has consequences beyond the immediate acceleration dis-
turbance. Two other systems depend on the acceleration performance of the
drag–free system for their operation. These are the charge control system and
the mass centering system. Because of the close dependence of the performance
of these systems on acceleration noise, the overall performance of STEP may be
degraded as a high power of the residual acceleration.

As mentioned above, the smallest measureable charge in the proposed system
depends on the drag free residual acceleration. The charge measurement system
works (conceptually) by measuring the acceleration of each test mass in response
to a dither voltage. Any residual satellite motion appears as an apparent charge
Mδa/E for a mass M , acceleration noise δa, and average applied electric field
E. E is limited to small values (≈ 0.1 volt per mm) by the requirement to reduce
disturbances from variations in the applied potentials and induced charges on the
test masses, so the acceleration noise is a limiting factor to the performance of the
charge measurement. Charge on the test masses is controlled by a system derived
from GP-B which uses ultraviolet light and a bias electrode to steer electrons on
or off of each mass. Incorporated into an appropriate control loop, this provides
the best possible control of the charge, limited by the charge measurement noise
q = Mδa/E. This produces two sorts of disturbance to the EP measurement,
one proportional to q2 (or δa2), and one proportional to q times any electric field
that may be present.

The ability to center the masses in each accelerometer depends on the ac-
celeration noise in the differential mode. The differential mode acceleration is
used to monitor the center of mass separation, with the Earth’s gravity gradient
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Fig. 12. Measured Output, in units of Φ0, GPG Science Mission Qualified SQUID
sm31b vs. time.

driving it. The centering can be no better than when the error signal from grav-
ity gradient is the same size as the noise in the differential mode, which is the
residual satellite motion times the common mode rejection. The static miscen-
tering measureable by this technique in principle is quite small; at orbit radius
R = 6870 km, g is about 8.43 m/s2, and for observation time T0 = 100, 000 s,
and Cmrr = 10−4, the measureable miscentering is ((T0/2π)1/2RδaCmrr)/g ≈
3×10−13 m. This is not likely to be achieved because the masses’ common modes
will be excited by the acceleration noise, to an average amplitude δa/(2π/Tb)2 ≈
10−10 m, where Tb is the radial period of the magnetic bearings. It is this latter
displacement which is converted to signal frequency by mixing with the Earth’s
gravity gradient at twice signal frequency, and causes the disturbance dynamic
CM offset mentioned above.

Thermal Expansion

Thermal expansion in the instrument has two effects. It can change the shape of
the test masses, causing them to couple more strongly to gravity gradients, and
it can directly affect the measurement.

Thermal contraction coefficients of the test masses must be known to∼10% in
order that they will come out the right size at low temperature. Great accuracy
of knowledge is not necessary because the contraction is a small part of the
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Fig. 13. Power Spectral Density of Trace in Fig.12, in units of Φ0/
√
Hz.

total size. The important thing is that the thermal contraction be uniform for
the whole mass. Differences in thermal contraction can mechanically warp the
shape of the mass much more than the actual thermal contraction would suggest.
Current thinking is that the test mass thermal contraction needs to be uniform
to about 10−4 to prevent warping. If this is the case, apparent changes in position
due to nonuniform expansion coefficient will be limited to less than 1.4× 10−16

m, which would not be expected to recur at signal frequency. This offset is
insignificant for the acceleration measurement.

The concern then is about the warping of the test masses. This might change
the carefully minimized gravitational coupling terms. The total thermal expan-
sion of beryllium (for example) over the range 0–293 K is about αBe = 0.00131;
the masses must be oversized by this fraction to come to the correct size when
cold. If the expansion coefficient is anisotropic, and differs by 10−4 in perpen-
dicular directions, the diameter/length ratio will change by about 10−4 αBe =
1.3 × 10−7 upon cooling from room temperature, and the length (or diameter)
will differ from its intended value by about 2 × 10−8 meters. This is comfort-
ably smaller than the smallest relevant tolerance in the manufacture, 0.3 µ or
30× 10−8 meters.

Much larger dimensional changes could occur if there are gradients in the
expansion coefficient over scales about equal to the size of the mass, because of
thermal bending. The worst case thermal bending would be the case of a bender
comprised of two strips of material with differing expansion coefficients welded
to each other. The deflection of such a bender is roughly L2δα/S where L is the
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Fig. 14. Measured Output, in units of Φ0, GP-B SQUID with Temperature Controlled
Electronics.

length, δα the difference in thermal expansion, and S the thickness; Substituting
worst case values from our test mass dimensions, L = 0.069415 m, S = 0.0025
m, δα = 10−4 αBe , the deflection will not exceed 25× 10−8 meters. This is also
less than our smallest required tolerance. Coupon samples will be taken from
the material during machining to verify that the expansion differs by no more
than a specified amount.

The most stringent mechanical stability requirement comes from considering
the case that one position sensing coil substrate undergoes a dimensional change.
Then the resulting change in the radius of the thin film pickup coil will change
the pickup coil inductance and could thereby mimic a change in position of the
test mass.

The mechanical stability requirement on the accelerometers is set to limit
the possibility of false differential acceleration signals at signal frequency. Ulti-
mately, the acceleration measurement is a measurement of test mass position.
The natural period of the longitudinal mode of test mass oscillation is ∼1000
seconds, so ωn ≈2π×10−3 rad/s. Therefore the readout system requirement of
differential acceleration resolution of less than 4 × 10−18 m s−2 in a 6 × 10−6

Hz bandwidth implies the differential position measurement resolution in this
same bandwidth must be 4 × 10−8 m/s−2/(2π × 10−3 s−1)2 ≈ 10−13 m. The
position of each test mass is measured by a differential circuit with a pickup coil
near both ends of each test mass belt. This makes the measurement relatively
insensitive to changes in the test mass size and accelerometer length, and also
greatly eases the dimensional stability requirement of the accelerometer housing
along the direction of the symmetry axis.
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Using the STEP baseline pickup coil design parameters we have modeled the
dependence of inductance on coil radius and thin–film trace width and compared
this to the dependence of inductance on test mass position. We require that the
dimensional changes in the sensing coil contribute at most 10% of the required
test mass position resolution and obtain a mechanical stability requirement of 1
part in 10−11 for changes modulated at signal frequency.

Given the systematic temperature difference requirement of 500 µK, the me-
chanical stability requirement will be easily met using either quartz or sapphire
material to construct the accelerometer housing, bearing, sense coil, and elec-
trode structures. For example, Braginski and co–workers [3] report measurements
of the linear expansion of sapphire at 4.5 K to be ∼5×10−11 K−1 with a good
fit to the predicted T 3 law in there measurement range of 4.5 - 15 K. Taylor
and co–workers [7] obtained similar results for a sapphire Fabrey–Perot opti-
cal cavity between 5 K and 77 K. Measurements of Heraeus engineering grade
quartz for the Gravity Probe B program indicate a linear expansion of below
1× 10−10 K−1 at 77 K while the higher grade Herasil 1 Top has an even smaller
thermal expansion.

Helium Tide

If the liquid helium used to refrigerate the experiment has a free surface, it can
move under small influences such as the gravity gradient of the Earth (∼10−7
g), which are harmonically related to the signal frequency. This moving mass
would produce significant gravitational disturbances to the experiment, which
by frequency conversion may appear in the signal bandwidth. This is a concern
because the estimated disturbance might be several thousand times the pro-
posed sensitivity and is essentially impossible to calculate reliably. Moreover,
separating this disturbance by rotating the spacecraft may not work well since
it is locked to the signal frequency, although its amplitude and phase could be
varied. The disturbance would be expected to change its signature significantly
during the mission, as the helium boiled away and the free surface changed its
size and response characteristics.

We have observed that the liquid–vapor interface in an aerogel nearly filled
with superfluid helium II takes a shape that is independent of gravity over times
up to 3 hours (Fig.15). The most likely reason that the interface is fixed is that
its position is determined by capillary forces. The studies were for nearly filled
aerogel, since this is when capillary forces are weakest and least understood,
and the distribution of helium in the aerogel is then most susceptible to gravity.
Apparently, therefore, the helium II liquid–vapor interface will not change shape
in response to gravitational forces of 1 g or less for any amount of helium in
the aerogel. This makes aerogel a very promising candidate for helium control
in STEP. Aerogel is expected to eliminate this disturbance, so that elimination
by experimental procedures or data analysis is no longer necessary. Studies are
continuing on aerogels and other materials to determine their suitability for this
purpose.
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Fig. 15. Images of an aerogel sample as a function of the filling fraction, at 1.9 K.
The dark regions are caused by an increase in light scattering in regions from which
helium has been removed. The lower density region is below the higher density region,
indicating a weak influence of gravity on the helium distribution. Tilting the cryostat
11 degrees had no noticeable effect.

Patch Effect

The patch effect is the variation of electrical potential on conducting surfaces,
which can give rise to spurious couplings between the test masses and their
housing. Work function differences can occur in polycrystalline metals due to the
surface exhibiting random crystal orientations or due to non–uniformly adsorbed
surface layers. We have recently re–evaluated this potentially disturbing effect
and performed a trade between it and the mass—housing gap, an important
dimension in the baseline design.

We have performed a theoretical analysis of the expected patch effect forces,
force gradients, and dissipation and noise effects, and characterised the grain
structure of sputtered Nb films which will coat the test masses, and which form
the bearing and position sensing circuits. A theoretical study of the forces and
gradients of forces due to variations of electrostatic potential over the surfaces
of two adjacent metallic surfaces has been given for the LISA gravitational wave
experiment in [8]. Based on these studies we conclude that the patch effect will
not present a significant disturbance to the STEP experiment. Therefore, the
patch effect does not determine gap spacing tradeoff in the baseline accelerometer
design, although it could become important for significantly smaller gaps than
our current baseline of 100 µm. The error analysis includes the following effects
to determine design tradeoffs: bearing magnetic fields, effects of trapped flux,
capacitive forces and dissipation (in particular with non–zero charge on test
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masses), the variation of inductance with distance of position sensing circuits,
including its first and second derivatives, and gravity gradient couplings.

A basic result for patch effect forces is as follows: If there is significant co-
herence between the 2–dimensional potential distributions on both surfaces and
there is significant power in the spatial spectrum of potential variations at wave-
lengths comparable with the spacing between the surfaces, then the force gradi-
ents are approximately ε0AV 2/a3 where a and A are the separation and common
area of the electrodes respectively, and V is the amplitude of the variation in
potential. If all the spectral power lies at wavelengths much smaller than the
separation, the forces and force gradients are reduced exponentially. If there is
no correlation between the two distributions of potential then there will be no
force or force gradient. Correlations between the distributions for clean surfaces
will in general be determined by the distribution of surface grains, discussed
below for Nb films similar to those for STEP.

Differences in the parasitic stiffness coupling the test–masses to the space-
craft, caused by patch effect, will not lead to a loss of common–mode rejection
because they will be trimmed out during setup by adjustment of the detector
supercurrents. The stiffness due to the patch–potential correlations must not
change the resonant frequency by more than a factor 10−4. STEP can toler-
ate potential variations of 0.3V and separations of 0.1 mm. The drag–free (or
common–mode acceleration noise) requirement on the patch–field force gradients
should be approximately satisfied by the current STEP accelerometer design ir-
respective of the spatial distribution and correlation of the patch–potentials.

Any variation in time of the forces and force gradients due to patch–fields
will necessarily produce energy losses and will affect the quality factor of the
accelerometer. We have shown that, provided the thermal noise is sufficiently
low to satisfy the STEP science goals, the patch–potential variations will not
produce significant differential forces on the test–masses.

Perhaps the most likely way that the surface potentials can be modified over
time and over distances large enough to cause a correlation is through the charge
management system. The UV radiation will liberate surface contaminants as well
as electrons. The work functions of both the test–mass and the levitation coil
will be modified by the UV exposure (and the high energy protons in the SAA).
Some of these free ions will have low energies and will move in the electric
fields generated by the patch fields near the metallic surfaces and presumably
will occupy potential wells due to the patch fields. Changes in the electric field
experienced at one surface due to the presence of the other will lead to a change
in the population of adsorbate atoms and corresponding losses. The time taken
for an adsorbate to diffuse will depend on the depth of the potential well in which
it sits [2]. Such motion of adsorbates will give rise to losses in energy. Depending
on the number density distribution of wells as a function of energy this will give
rise to 1/f noise in a fashion similar to anelasticity in mechanical suspensions.

If the patch fields are correlated initially, charge motion will take place in
order to anti–correlate them as much as possible. After a time the stiffness will
reduce by an amount ∆Kp which is analogous to the lossy component of a
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mechanical spring. We can put an upper limit on ∆Kp using the requirement
that the common–mode rejection ratio be stable to one part in 104, ∆Kp ≈
10−4mω2, where ω is the resonant angular frequency of the differential mode of
the accelerometer with equivalent mass m. Estimates for ∆Kp lead to a condition
on ω. The spectral power density of thermal noise forces produced by fluctuations
in the surface contaminants is expected to be F 2 = 4kT∆Kp/ω, which must
be less than 10−30 N2/Hz1/2 to achieve the STEP goal. In the worst case the
thermal noise is generated entirely by motion of surface contaminants. Thus∆Kp

must be less than 10−30ω/4kT . Thus the common–mode rejection ratio will be
stable enough provided 10−4ω2 > 10−30ω/4kT . Using an angular frequency of
ω = 10−3, we find that this inequality is satisfied with an order of magnitude to
spare.

Niobium thin films grown by sputtering tend to be very fine grained poly-
crystalline materials. Niobium films of order a micrometer or larger in thickness
become quite rough. These films and the oxide layer on them have been well
characterized. One point to consider is that any niobium surface which has been
exposed to the atmosphere will develop an oxide coating consisting of amorphous
Nb2 O5 , which is an insulator, mechanically hard and stable, dense and well
bonded to niobium. In STEP these films will have to be covered with an inert,
thin, slightly conducting layer to prevent charge buildup.

Fig.16 below shows an example of a niobium film grown at Stanford for
coating on quartz substrates. The small grain size suggests that any correlation
of surface potentials will be due to overall texturing rather than specific details
of the grains.

6 Conclusion

We have presented a simplified description of the STEP apparatus and proce-
dures, followed by highlights of recent technical progress. The STEP accelerome-
ter design has been advanced to a stage where we can build a prototype flight ac-
celerometer based on previous working models. Particularly important progress
has been made in a unified error model for the experiment and major distur-
bances, and in practical solutions to some longstanding problems such as helium
tide and patch effect disturbances.
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Abstract. Free fall tests for proving the Weak Equivalence Principle (WEP) have been
rarely be done in history. Although they seem to be the natural experiments to test the
equivalence of inertial and gravitational mass, best results for proofs of the WEP could
be attained with torsion pendulum tests to an accuracy of 10−12. Pendulum tests are
long term periodic experiments, whereas free fall tests on Earth can be carried out only
for seconds causing certain limitations in principle. Nevertheless, very precise fall tests
in the 10−12 to 10−13 range are possible and under preparation to be carried out on the
Drop Tower Bremen for a free fall over 110 m. These tests require position detectors
with an extremely high resolution in order to measure tiny displacements of freely
falling test masses. Using SQUID–based sensing technique, the displacements can be
determined with an accuracy of 2×10−14 m/

√
Hz. The SQUID system, developed and

manufactured at Jena University, provides high sensitivity and extremely low intrinsic
noise, especially at low frequencies. Some recent results are discussed.

1 Introduction

The study of gravitational interactions is an important challenge for basic sci-
ence. Many theories have been developed to describe the possible material de-
pendent coupling of masses to gravitation, but up to now a corresponding ex-
perimental proof is missing. The evidence of such a dependence is indicated by
a violation of the Weak Equivalence Principle (WEP). This principle requires
an exact equality between gravitational mass mg and inertial mass mi. The
experiments carried out to test the WEP may be classified into two groups:

1. Torsion balance experiments and
2. Galilean type (or drop tower) experiments.

Torsion balance experiments carried out by Dicke [1] and Su et al. [2] placed an
upper limit of 5× 10−12 on the so–called Eötvös–factor

η(A,B) = 2
(mg/mi)A − (mg/mi)B
(mg/mi)A + (mg/mi)B

. (1)

This is still the best proof of the validity of the WEP.

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 248–272, 2001.
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Although Galilean tests seem to be the easiest way to prove the WEP, the
best experiments as performed by Niebauer et al. [3] and Kuroda and Mio [4],
e.g., allow an accuracy of 5× 10−10 only. In these free–fall experiments absolute
gravimeters were mainly used adapted especially to this application. Although in
these experiments the difference signal is detected, the measurement is absolute
in a sense that the unavoidable time delay between the release of both test masses
at t = 0 will cause a displacement ∆s ≈ g ∆t t which can be larger by orders of
magnitude than the expected signal due to a violation of the WEP in the aspired
limit η ≤ 10−13. On the other hand, the short free–fall time of 0.3 s only yields
a very small gravity dependent relative shift in the position of the test body.
The Drop Tower Bremen as an earth bound microgravity facility with a free–fall
distance of 110 m and a flight time of 4.7 sec offers the unique possibility of a
pseudo–Galilean test of the WEP in which a true relative measurement can be
performed. This can be realized by integrating the measuring device into the
free falling system so that displacements caused by the time delay become very
small. The experiments cover the interesting and rarely measured distance range
of up to 100 m and are ideal tests for the planned space experiments like the
Satellite Test of Equivalence Principle (STEP).

In this drop tower experiment as well as in the satellite STEP experiment
of NASA/ESA, one wants to prove a possible violation of the WEP at a level
of an accuracy up to one part in 1013 and 1018, respectively. High performance
SQUIDs will be used as ultra sensitive superconducting position detectors for
measurements of tiny displacements of test masses [5,6].

2 Experiment Description

2.1 Drop Tower Bremen

The Drop Tower Bremen is a 146 m high building located at the campus of
the University of Bremen, Germany. Inside capsules weighting up to 500 kg,
experiments can be carried out under conditions of weightlessness during 4.74 ses
in free fall inside a 100 m high drop tube. The residual disturbing acceleration is
reduced to 10−5 to 10−4 m/sec2 (≈ 10−5 to 10−6g, where g is the local attractive
acceleration of the Earth gravitational field) below the frequency range of 100
Hz. This is achieved essentially by pumping down the entire drop tube inside
the concrete tower to a vacuum pressure of 1 to 10 Pa. By using a special release
system for the drop capsule, the rotation of the capsule during free fall can be
minimized down to 0.5◦/sec. To minimize the transfer of forces induced by wind,
the drop tube is free–standing on a 2 m–thick concrete ceiling without any link
to the surrounding concrete shaft. The deceleration chamber, 10 m in height and
9 m in diameter, is integral with the tower foot. After free fall in the Earth’s
gravitational field under vacuum the capsule’s velocity is about 46.5 m/sec; for
breaking, the capsule falls into a tank 8 m high filled with 30 m3 fine graded
polystyrene. Although the impact seems to be a strong mechanical shock, the
deceleration system in fact provides a very soft landing. The deceleration process
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Fig. 1. Drop Tower Bremen.

lasts about 0.2 sec with an average deceleration rate of 250 m/sec2, the maximum
peaks do not exceed 500 m/sec2.

Drop capsules are cylindrical in shape; 3 m high and 80 cm in diameter. At
the front of each capsule, a cone 50 cm long is mounted to stabilize it during im-
pact deceleration. The experiment is mounted on horizontal platforms inserted
in a system of 4 vertical stringers. After assembly and final tests a vacuum–tight
cover is slipped over the stringer structure. Normal pressure conditions inside
the capsule are helpful, because additional provision for adaptation of the ex-
perimental equipment to vacuum conditions can be avoided. The experiment
platforms are of ”sandwich” construction, made from wood covered by thin alu-
minum plates, and have excellent damping characteristics. At the top of the
tower, the capsule is connected by an umbilical cord and helium vent lines. Just
before release, the umbilical is drawn and the vent lines become closed to avoid
any disturbance to the freely falling capsule [7].

In optimizing the release process, not only the possible rotation of the falling
capsule must be considered but also the disturbing structure vibrations induced
during release. Rapid release causes oscillations of the structure along its cylin-
drical axis. These oscillations, as a result of relaxing the stretched structure,
do not depend on any properties of the structure’s material, which only influ-
ences the natural frequency of the structure, and must be damped within ade-
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quate time (ca. 0.15 sec). Beside release process and air drag already mentioned,
some other physical reasons exist which limit the the possibility of attaining real
weightlessness in the sense of total compensation of the gravitational force and
disappearance of any disturbing acceleration. In [8], disturbance effects are clas-
sified and listed. Nevertheless, carrying out a gravitational experiment at Drop
Tower Bremen needs careful analysis of further disturbing effects which will be
described below.

2.2 Experimental Set–Up and Timing

The drop tower experiment yields to compare the gravitational accelerations
acting on two test masses falling freely in the Earth’s gravitational field [9].
The test masses of different composition (e.g. niobium, aluminium, or lead) are
hollow cylinders aligned along their vertical axes to place the centres of mass
(CM) at the same point. Position differences between the test masses caused
by, no matter what, will lead to a differential acceleration due to the Earth’s
gravitational field, which could mask a possible material dependent difference
of accelerations by magnitudes. Therefore in the ideal cylindrical constellation
(both CMs the same), both cylinders suffer the same acceleration by the Earth’s
gravitational field and their mutual gravitational attraction will become zero.
The experiment is carried out in a small high vacuum container cooled down in
a liquid helium Dewar vessel to a temperature of 4.2 K. Because the vacuum
inside the tower’s tube is insufficient to attain a residual acceleration level of
< 10−6 m/sec2 (≈ 10−7g), the Dewar is fixed on a free–flyer platform with a
diameter of 460 mm and a height of 1190 mm. Handling the entire experimental
apparatus inside the drop capsule as a free flyer additionally released just after
the drop capsule’s release, influences by air drag can be minimized.

Both test masses become adjusted with an accuracy of 1µm by a position coil
system at top and bottom of each test mass. After positioning which needs about
0.5 sec only, the test masses are released inside the vacuum container by shut–off
of the position coil system. Vacuum is needed to minimize mechanical noise due
to Brownian motion of the gas atoms surrounding the test masses; the resulting
drift velocities of < 10 µ m/sec during free fall are small enough to neglect air
drag effects inside the vacuum container. Cylindrical meander coils surrounding
the test masses, which have a superconducting coating, levitate them along the
two axes perpendicular to the cylindrical symmetry axis. Levitation is based on
the phenomenon of magnetic flux exclusion from the bulk of a superconductor,
called the Meissner–Ochsenfeld effect.

The tiny differential displacements and accelerations are measured by SQUID–
based sensors. SQUIDs sense the relative displacement of the test masses as an
inductance change with ultra high accuracy of 4 × 10−14 m/

√
Hz. In principle,

a pair of pick–up coils, wound in series opposition, are placed on either side of a
thin superconducting diaphragm covering each test mass. When the pick–up coil
system is connected across the input coil of the SQUID any small movement of
the test mass results in an output signal of the SQUID. Each test mass acts as a
superconducting tuning slug changing the inductance of the pick–up coils placed
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in front of the top and bottom area of the cylindrical test masses. In the initial
position a persistent current has to be trapped into a superconducting input cir-
cuit with definite flux. A motion of the test masses modulates the inductivity of
the pick–up coils and, since the flux in the superconducting circuit is constant,
forces an additional screening current through the pick–up circuit which will be
detected by the SQUID. Such high precision measurements need robust SQUIDs
unaffected by repeated thermal cycling, with an extremely low noise especially
at low frequencies, excellent long term stability of all parameters, and immunity
to mechanical shocks, vibrations, and r.f. interference.

After a drop time of about 4.3 sec, the experiment is finished by clamping
and locking the free flyer platform and re–caging the test masses to avoid any
destruction of the experimental equipment.

2.3 Main Error Sources

The accuracy of the experiment depends directly on the precision of the test
masses’ alignment and orientation after release. Disturbances during release re-
sult in initial displacements (∆z �= 0) and initial velocities (∆v �= 0) causing an
acceleration difference of the test masses ∆agrad due to the Earth’s gravity gra-
dient and the mutual gravitational attraction of both test masses, respectively.
This relative acceleration may dominate the potential material dependent ac-
celeration ∆aWEP by orders of magnitudes. To elude this problem by taking
into account the desired accuracy of the apparatus, boundary conditions for the
experimental set–up can be derived in the following manner:

1. Choose of proper cylinder materials (appropriate for machining), and
2. Optimizing the geometry of the cylinders by keeping the contribution of

∆agrad clearly below ∆aWEP.

The initial values of the maximum acceptable relative displacement and ve-
locity of the test masses are directly connected to a proper choice of the cylin-
ders’ materials, with respect to their densities, and their geometry. With suitable
values it is possible to compensate the differential acceleration of the inhomo-
geneous Earth’s gravity field by the mutual gravitational attraction of the test
masses. The motion of the free falling test masses is described by two coupled
differential equations (assuming a motion only in z–direction), which have to be
solved numerically:

a1 = −∂zΦearth −G∂z

∫
ρ2

z1 − z2
+ ε,

a2 = −∂zΦearth −G∂z

∫
ρ1

z2 − z1
, (2)

where a1,2 are the test masses accelerations, z1,2 their coordinates in fall di-
rection, and ρ1,2 their densities, respectively. Φearth is the Earth’s gravitational
potential, and G Newton’s gravitational constant. A material dependent accel-
eration of the test masses is taken into account by adding ε to the equation of
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Fig. 2. Displacement ∆z(t) of the test masses in presence of a material dependent
gravity force (ε �= 0) taking into account an initial displacement ∆z0 = 10 µm and an
initial velocity δv0 = 10 µm/sec.

motion of one test mass. The second term of eq.(2) is given by:

∂zΦ
i
cyl = Gπρi f(Lj , zi − zj , r

j
in, r

j
out) , i = 1, 2, i �= j , (3)

where L denotes the cylindrical length, rin and rout the inner and outer radius
of the cylinders, respectively, and ρ the density. Φi

cyl is the gravitational poten-
tial of the i–th cylinder. Eq. (3) shows that optimization is a pure geometrical
problem and could be solved for each test mass pair individually. In practice, we
choose only one geometrical configuration for all test mass pairs and try to com-
pensate the incomplete compensation by perfect release and positioning of the
test masses. For a detailed problem description, see [10]. If initial displacement
and velocity do not exceed certain values of ∆z0 and ∆v0 (declined by the cylin-
der design), fictitious position sensitive detectors with a resolution capability of
∆z ≈ 10−13 m show a motion of two test masses which do not interact gravi-
tationally and move coincidently in a quasi–homogeneous gravity field. Hence,
the differential motion looks linear and a WEP–violation should be observed as
a relatively accelerated motion.

Assuming a material dependent acceleration difference (ε �= 0) of ∆a/a =
10−13 an approximation of the additional ε–term is given by

ε = 10−13
GMearth

z21
, (4)

where Mearth denotes the Earth’s mass. The numerical solution of the differential
equation system (2) neglecting the cylinder–cylinder gravitational interaction is
shown in Fig.2. Acceleration difference and displacement are corrected as de-
scribed above. To test the WEP with an accuracy of 10−13 by use of optimally
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designed test masses1 (see Fig.3), the effecting resolution of the position sensing
SQUID–based system has to be ∆z ≤ 10−12 m. Disturbances due to a non–
momentum free release resulting in different initial velocities of the test masses
may be acceptable if they do not exceed ∆v0 = 10 µm/sec. The maximum dis-
placement tolerance of the CMs of the test masses is ∆z0 = 10−5 m without any
loss in performance. These requirements are in accordance with our experimental
results for positioning the test masses.

Fig. 3. Test masses: inner test body made of
special lead alloy (left); outer test body made
of aluminium coated with niobium (right). (For
comparison: a coin of 1 Deutsche Mark at the
lower right.)

Temperature drifts inside the
vacuum container during the mea-
surement would lead to a linear
expansion of the test masses su-
perposing the displacement mea-
sure, and temperature gradients
in the vacuum container may
cause a non–symmetric temper-
ature gradient inside the test
masses effecting a gravity gradi-
ent dependent influence on the
free fall motion of the test masses.
Considering the maximum ac-
ceptable tolerance of the CM dis-
placement of 10 µm during free
fall, temperature must be stable
within an accuracy of ±0.1 K.
Measurements showed that the
temperature is increased by an amount of < 0.05 K only during the drop time.
The temperature increase is correlated by a small He–pressure increase inside
the Dewar vessel, because the exhausting valve has to be closed during free fall
to avoid a reduction of the quality of the microgravity. Only a slight increase of
the helium level (ca. 8.5 %) is observed.

In addition, several experiments have been performed to measure the rela-
tively strong magnetic field components Bz (vertical), By (horizontal), and the
vertical gradient dBz/dz inside the steel tube during free fall. The diameter
of the pick–up coils connected across the SQUID input was 1 mm only. The
magnetic field pattern observed (see Fig.4) was caused by the welding seams
and changing magnetic remanence of the tube segments. After shielding the
experiment perfectly by superconductors, the disturbing magnetic field signals
disappear.
1 In inhomogeneous gravitational fields the acceleration of a test body depends not
only on the position of its center of mass but also on its shape. The geometry of
both test bodies were numerically optimized in such a way that these test bodies
move with nearly the same acceleration in the inhomogenous gravitational field of
arbitrary disturbing masses nearby provided, of course, that the centers of mass of
the test bodies are equal.
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Fig. 4. Magnetic field inside the drop tube (measured during a free fall experiment
using a SQUID–based magnetometer).

Principle limitations of the resolution and systematic errors of the SQUID–
sensor and the sensing system are discussed separately below.

3 SQUID Based Position Detector

In order to realize the precision measurement of tiny displacements of free
falling test bodies, highly sensitive SQUID–based measurement equipments are
required. The Superconducting Quantum Interference Device (SQUID) is the
most sensitive magnetic flux detector known today. The operation of SQUIDs is
mainly based on two effects, observable only at low temperature in the presence
of superconductivity:

• flux quantization in superconducting loops and
• Josephson effects.

SQUIDs has often been referred to as a cryogenic or superconducting magne-
tometer, and indeed the measurement of extremely small magnetic fields is one of
the most important applications. However, the scope of the SQUID’s usefulness
extends far beyond simple field measurements. Almost any low–frequency signal
that can be converted into a corresponding magnetic flux signal will be detected
at a greater level of sensitivity with a SQUID than with any other instrument.

Applications of SQUID systems have ranged from the investigation of mag-
netic and electronic properties of materials to biomagnetic research, and from
the measurement of millikelvin temperatures to the detection and characteriza-
tion of subsurface magnetic structures on land and at sea. In recent years the



256 W. Vodel et al.

Fig. 5. DC SQUID UJ 111. Chip fixed on a printed circuit board with contact pads.

application of high performance SQUID measurement systems in fundamental
experiments like the proof of the universal proportionality of inertial and gravi-
tational mass is one of the most promising field in modern physics.

3.1 The DC SQUID

The magnetic flux sensor employed in this work is an eight–loop thin film
DC SQUID UJ 111 [11] based on Nb–NbOx–Pb/In/Au window–type Joseph-
son tunnel junctions developed and fabricated at the Department of Physics of
Friedrich–Schiller–University Jena. In contrast to other sensors the SQUID UJ
111 was designed for universal applications in precision measurement technique
and works at an extremely low noise level also in a magnetically unshielded
environment.

Each Josephson junction is resistively shunted by strips of Ag/In alloy having
a resistivity of 2Ω at 4.2 K. The integrated input transformer consists of two coils

Fig. 6. Simplified layout of the thin film DC SQUID UJ 111. See text for details.
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Table 1. Parameters of the DC SQUID UJ 111 (flux quantum Φ0=2.07×10−15 Vs).

Parameter Value

SQUID inductance LSQ 40 pH
Input inductance Li 0.8 µH
Junction shunt resistance R 2 Ω
Junction capacitance C ≈ 0.6 pF
Stewart–McCumber parameter βc < 0.5
SQUID parameter βL 1
Junction critical current Ic 3 - 30 µA
Number of turns in input coil N1 2 × 18
Coupling coefficient k between SQUID and input coil 0.9
Input current sensitivity ∆Ii/∆Φ 0.4 µA/Φ0
Modulation current sensitivity ∆Im/∆Φ 20 µA /Φ0

of 18 turns each, connected in a gradiometric configuration, providing an input
inductance of about 0.8 µH. The one turn flux modulation coil is inductively
coupled only to one half of the gradiometric SQUID loop system. The contact
pads for bias current, voltage measurement, and flux modulation are made of
niobium and are connected with the printed circuit board of the sensor using 20
µm thick aluminium wire and bond techniques. Niobium wire (thickness: about
25 µm) is also used for the bonded interconnections between the input coil and
the niobium input leads of the SQUID. The complete SQUID has been integrated
on a 3 mm × 5 mm silicon chip and is placed on a printed circuit board with an
overall size of 8 mm × 16 mm (see Fig.5).

A simplified structure of the integrated DC SQUID sensor, as described
above, is shown schematically in Fig.6. An overview on some important elec-
trical parameters of the applied SQUID type is given in Table 1.

The long term stability of the parameters given during a time period of
several years is remarkable although the SQUID described is not encapsulated
hermetically. According to our experience there is no influence on the SQUID
parameters even after more than 100 cooling down cycles. It should be pointed
out that the SQUID sensors are also very insensitive to mechanical shocks tested
by free–fall experiments over a height of up to 110 m causing a deceleration of
up to 500 m/sec2 (50 g) at the end of the flight.

3.2 SQUID Control Unit

The SQUID electronics consist of the low noise preamplifier and the SQUID
control and detector unit (see Fig.7). The low source impedance of the SQUID
(about 1 Ω) is stepped up to the optimum impedance of the preamplifier with
the help of a matching transformer. The first stage of the preamplifier consists
of two low noise junction field effect transistors (i.e. Toshiba 2SK146) coupled
in parallel with a noise optimum source impedance within the range of 1 and
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Fig. 7. Photo of the SQUID Control unit with preamplifier.

100 kΩ. Thus, the matching condition for low noise operation is well satisfied.
The choice of the cables connecting the transformer with the SQUID and the
preamplifier, respectively, is usually rather critical. Twisted pairs of teflon in-
sulated copper wires were used to keep the contribution of current noise from
the cables negligible. Each pair is installed in a grounded Cu–Ni–tube (diam-
eter: 1 mm) preventing disturbances by RF interferences. The contribution of
the SQUID preamplifier to the total voltage noise observed was negligible in all
cases reported.

The d.c. bias and flux modulation current (f = 125 kHz) are fed into the
SQUID via voltage–controlled current sources situated in the preamplifier case.
The amplification and detection of the SQUID signal is achieved by the state–
of–the–art design (Fig.8), i.e. the preamplifier is followed by an AC amplifier and
phase sensitive detector with a PI–type integrator. The output signal returns via
a resistor RF to the modulation coil to close the feedback loop. Furthermore,
the SQUID control unit has three different modes of operation:

• the test mode,
• the small signal measurement mode, and
• the flux–locked–loop mode.

All experiments were usually performed with standard cryogenic equipment
at liquid helium temperature. No special care was taken to stabilize the bath
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Fig. 8. Block diagram of the DC SQUID Controller.

temperature. The cryostat was especially developed for drop tower experiments
and contains a maximum of 20 l liquid helium. All parts of the dewar were
made of nonmagnetic stainless steel. As radiation shields, layers of 25 nm thin
semireflecting aluminium coated Mylar foil were used. In this configuration an
operating time of more than 10 hours is available.

The ground based measurements to test the performance of the SQUID mea-
surement system and the position detectors were performed in a open labora-
tory at the Friedrich–Schiller–University Jena. The low frequency noise spectra
(Fig.9) were measured with a Hewlett–Packard HP 3582A Fast Fourier Transfor-
mation (FFT) spectrum analyzer using the Hanning window. The white noise
levels were obtained by calculating the FFT. To attain the result in units of
the flux quantum, the spectral density of the voltage was divided by the change
of the output voltage corresponding to one flux quantum Φ0 measured before.
In noise measurements the SQUID was operated with a peak–to–peak modula-
tion of Φ0/2. In general, the optimum noise performance was obtained when the
SQUID was biased slightly above the critical current.

For an optimum choice of bias and flux modulation point, a white noise flux
spectral density of 2 × 10−6 Φ0/

√
Hz for the SQUID system was found when the

antenna was not connected but the SQUID input coil was shunted. This flux
noise corresponds to an equivalent current noise through the input coil of 0.9
pA/
√
Hz, an effective energy factor of 543 h (h = Planck’s constant), and an

energy resolution of 3.6× 10−31 J/
√
Hz [11].

3.3 Detector Principle

The main components of a SQUID position detector consist in a superconducting
pick–up coil and a superconducting diaphragm covering the test body. When
this pick–up coil is connected across the input coil of the SQUID and a definite
current is trapped in this closed superconducting loop any small movement of
the test mass results in an output signal of the SQUID.

We started our investigations with a position detector using one pick–up coil
only [12]-[14]. The basic scheme of an improved version of a position detector
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Fig. 9. Low frequency noise of the Jena DC SQUID system with the sensor UJ 111.
For this measurement the sensitivity of the SQUID system was adjusted to 10 V/Φ0.

with two pick–up coils is shown in Fig.10. The test mass changes the inductance
of both pick–up coils L1 and L2. In the initial position a persistent current I0 has
to be fed across heat–switch S1 into the superconducting pick–up circuit causing
a definite magnetic flux. During this procedure the input coil of the SQUID is
decoupled by heat–switch S2.2 The motion of the test mass modulates L1 and L2
and, since the magnetic flux in superconducting loops is constant, the variations
of the inductance of both coils force a screening current Ii corresponding to the
displacement of the test body ∆x to flow in Li.

The circuit can be described by the following equations:

I2 = I1 − Ii (5)
ΦII = L2I2 − LiIi (6)
ΦI = L1I1 + LiIi (7)

Eqn. (5) comes from the current conservation. Equations (6) and (7) come from
the flux conservation in two superconducting loops of the circuit, where ΦI and
ΦII are the fluxes trapped in these loops. These equations correspond to the
2 The heat switches consist of a small heater (a special non–magnetic resistor) and
a thin superconducting wire (niobium) possessing a good thermal contact to the
heater. The superconduting wire is connected with the remaining superconducting
circuit whereas the heater is insulated electrically from the circuit and has its own
power supplies (not shown in Fig.10). If a current flows through the heater, the
temperature increases and the superconducting wire becomes normal conducting.
Since the remaining circuit is superconducting, no current flows through the normal
conducting part. If the power supply of the heater is disconnected, the switch becomes
superconducting again, and the circuit preserves its magnetic flux distribution.
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Fig. 10. Extended position detector circuit with DC SQUID.

equations for the voltage in room temperature circuits. The solution for the
current Ii is

Ii =
ΦIL2 − ΦIIL1

Li(L1 + L2) + L1L2
. (8)

The sensitivity of the detector depends not only on the magnitude of the
fluxes but also on their sign. In order to get a maximal sensitivity for displace-
ments in the x–direction and a minimal sensitivity perpendicular to x the fluxes
ΦI and ΦII should have equal magnitudes and signs. Two switches are neces-
sary to feed two defined fluxes into the circuit (Fig.10). The current should be
supplied across switch S1, when the test mass is centered (L1 = L2). Assuming
a linear ansatz for the inductance (corresponding to the dependence of plunger
type coils)

L1(x) = L0 + L′x , L2(x) = L0 − L′x , (9)

and considering the initial conditions

ΦI = L0I0 , ΦII = L0I0 , (10)

we get for the current Ii:

Ii =
−2L′ x I0

2Li + L0 − (L′x)2/L0
≈ −2

2Li + L0
L′I0x , (11)

where I0 is the current fed into the circuit at position x = 0. The dependence
Ii(x) is linear for small displacements x. The ansatz (9) describes approximately
the inductance of plunger–type pick–up coils in their optimal working range (see
also section 4.1). In order to get a detector with a linear dependence Ii(x) within
a larger range one has to use coils with a special dependence of the inductance:

L1(x) =
1

u+ vx
, L2(x) =

1
u− vx

, (12)

where u and v are arbitrary parameters. However, it is difficult to produce wire
wound coils possessing such a dependence over a wide working range.
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According Eqn. (11) the detector measures the absolute position from a fixed
reference point, where Ii = 0. However, this reference point is not the centered
position of the test body but depends on the position of the test body at the time
the flux was fed into the circuit. Therefore, the reference point varies slightly
each time a new current is fed into the detector circuit. Therefore we get a high
accuracy of measurement of relative displacements whereas the accurracy of the
absolute position depends on the reproducibility of the supplied fluxes and is
much lower.

The current Ii is measured by the SQUID. As we described above we use
a flux locked loop electronics for readout. This electronics react to the detector
circuit by an integrated feedback coil. As long as the feedback loop of the SQUID
electronics is closed the reaction can be taken into account by using a smaller
effective inductance for Li instead of the real inductance of the SQUID input
coil. This corresponds to the behaviour of a transformer where the effective
inductance of the primary coil depends on wether the secondary coil is open or
bypassed. But note that the problem becomes more complicated if the feedback
loop of the elektronics is opened for a moment.

The most important advantage of this detector, compared with a detector
with a single pick–up coil, consists in the fact that the current I0 is not limited
by the critical current of the input coil of the SQUID [14], as long as x will be
small. According to 13, a higher current I0 will provide a much better resolution
δx of the detector:

δx =
2Li + L0

2k
√

LiLSQ

1
I0

1
α

δΦSQ , (13)

where L0 is the inductance of both pick–up coils in the initial position of the test
body (middle position), k is the coupling factor between input coil and SQUID
loop, LSQ is the SQUID inductance, δΦSQ is the flux resolution of the SQUID,
and α = |dL1/dx| = |dL2/dx|.

In order to characterize a detector or a converter it has to be distinguished
between sensitivity and resolution. The sensitivity is the ratio of the output
signal (e.g. the output voltage of the SQUID electronics) to the input signal
(e.g. the displacement). The resolution is the smallest difference of two values
which can just be distinguished. Often, the resolution is limited by the noise of
the detector. In this case, the absolute resolution can be increased by averaging
over a long time. Therefore, the so–called noise limited resolution is used to
characterize these detectors. This is the product of absolute resolution and the
square root of the averaging time (one divided by square root of measurement
bandwidth). For instance a position resolution of δx = 10−12 m/

√
Hz means:

• If you measure the position of a test body at two different times by averaging
the signal over 1 s per measurement point (or by using a low pass filter of 1
Hz), then you can dectect displacements of δx ≥ 10−12 m

• If you average over a time period of 10 ms per measurement point, the
smallest detectable displacements is 10−11 m only.

If the signal changes during the averaging time or the noise of the detector is
not white, the problem becomes more complicated.
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Fig. 11. Differential detector with two test masses.

The resolution of a detector depends on its sensitivity. A good resolution can
only optained, if the sensitivity is sufficient high. However, an increasement of
sensitivity (e.g. by amplification of the output voltage) not necessarily improves
the resolution, because both signal and noise will be increased.

The position detector interacts mechanically with the test mass because each
pick–up coil acts like a small magnet which repels the superconductive covered
mass. For the centered position of the test mass both forces compensate each
other. For this position we can calculate a spring constant by twice differentiating
the energy in the circuit:

E =
1
2
(ΦI + ΦII)2Li + Φ2

IL2 + Φ2
IIL1

L1L2 + L1Li + L2Li
. (14)

For most coils the spring constant is positive but for certain geometries also
negative spring constants are possible. For plunger–type coils negative spring
constants can occur if both ends of the test mass are completely inside the two
pick–up coils. After a small displacement one coil pushes the test mass further
into the other coil. The gradient of the gravitational field of the earth causes an
effect which can be described by a negative spring constant. The resulting total
spring constant can be compensated by additional levitation coils.

A second important parameter of the detector, besides the resolution, is the
dynamic range. This means the ratio of working range to the smallest signal
which can be detected. The SQUID works up to its maximal input current of
2 mA (corresponding to about 5000 Φ0) without any loss of sensitivity. Above
this current some parts of the input coil become normal conducting. The usable
working range is limited by the SQUID electronics. Because the SQUID is de-
signed for precision measurement, it has only a small integrated feedback coil.
The maximum working range of the SQUID electronics (±100 Φ0) is limited by
the relatively high feedback current needed. Even smaller working ranges of 1
or 10 Φ0 will be used in the final experiments due to certain advantages (faster,
less noise). With a resolution of 2× 10−6 Φ0/

√
Hz for our best SQUIDs we get

a dynamic range of about 106. This corresponds to the dynamic range of our
24–bit sigma–delta A/D converter (121 dB at 500 Hz).
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Fig. 12. Dependence of the inductance of a pick–up coil on the position of the test
body. See text for details.

During the measurement time of about 4 sec the test mass should not leave
the working range of the detector. For a detector with a resolution of 10−12 m
the velocity of the test mass should not exceed 0.25 µm/sec. Before the release all
parts of the capsule are tensed by their own weight. After the release the struc-
ture contracts and accelerates the test mass to a velocity of about 1 cm/sec.
Therefore the test mass has to be fixed during the release of the capsule and
after the vibrations have faded away it has to be placed in the centered posi-
tion. This can be done by mechanical means (piezo elements) or with additional
suspension coils. In our recent experiments we measure the displacement of two
simultaneously free falling test masses. A violation of the WEP corresponding
to an Eötvös factor η �= 0 will cause a displacement ∆x between the two test
masses during the fall. If both test bodies start with the initial velocity of v0 = 0
then this displacement is:

∆x = η s0 , (15)

where s0 is the drop length.
The vertical gradient of the gravitational field of the earth causes a displace-

ment of bodies if their centres of mass are not at the same height. Therefore the
centres of mass of the two test bodies have to be in coincidence with an accuracy
of < 1 µm. The position detectors of the two test bodies can be combined in a
circuit [15], as shown in fig. 11. The current in the SQUID input coil is:

Ii =
Φ1L

−1
1 − Φ2L

−1
2 + Φ3L

−1
3 − Φ4L

−1
4

Li(L−11 + L−12 + L−13 + L−14 ) + 1
, (16)

where Φm (m = 1, . . . , 4) is the flux in the loop consisting of pick–up coil Lm

and the SQUID input coil Li. It is possible to balance the circuit by adjusting
the ratio of the two currents fed into the circuit (across switch S1 and S4, re-
spectively). For such a balanced detector the current Ii would be proportional
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Fig. 13. SQUID system output U(x) in dependence on the position of the test body
for various currents I0 in the pick–up circuit. The numbers at the curves indicate the
amount of the current I0 in mA.

to the displacement (x1 − x2) of the two test masses, but only for small dis-
placements x1 and x2. The detector can be balanced for all positions x1 and
x2 using inductance characteristics corresponding to (7), but geometries having
such dependencies in a large range are difficult to realize.

4 Experimental Results

4.1 Inductance Measurements

Beside theoretical determinations of L0 and dL/dx we used a special experimen-
tal equipment to measure the inductance of a pick–up coil in dependence on the
distance of a cylindrical test body with the help of a commercial LCR meter. An
example of the characteristics measured is given in Fig.12. In this case the coil
was hand–wired from a 0.3 mm niobium wire applying 8 turns. The geometry
of the coil and the body was a plunger–type one. The inductance in the initial
position (x = 4000 µm) is 1.2 µH and α is determined by differentiating the
curve in Fig.12 to be 0.45 nH/µm. These results are in good agreement with the
expected values.

4.2 Performance of the Detector

The performance of the DC SQUID position detector was investigated in ground–
based experiments. Therefore a special measurement equipment allowing us to
move the test body relative to the pick–up coils was used. It consists of a cylin-
drical test body with superconductive coated jacket and the two pick–up coils
at each end. In order to determine the sensitivity β = dU/dx of the detector nu-
merous characteristics U(x) for different currents I0 in the pick–up circuit were
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recorded. Fig. 13 shows an example for these characteristics. The unusual high
voltages come from editing the curves to avoid the reset branches of the SQUID
controller if the output voltage exceeds the maximum value by shifting segments
of the curves in the voltage direction. According to Eq. (13), the sensitivity in-
creases with higher currents in the pick–up circuit. Differentiating these curves
one can get the maximum sensitivity which also increases with the current I0.
This dependence is shown in Fig.14.

On the basis of the measured sensitivity, the noise limited resolution of the
detector (Fig.15) can be specified using the flux resolution δΦSQ of the SQUID
and the transfer function dU/dΦ of the SQUID system. This correlation is ex-
pressed by the following equation:

δx =
1
β

dU

dΦ
δΦSQ . (17)

Inserting the flux resolution of 6× 10−6 Φ0/
√
Hz (including some environmental

noise, in contrast to the value 2×10−6 Φ0/
√
Hz described in section 3.2) and the

flux sensitivity of 2.5 V/Φ0 of the SQUID system used one obtains a position
resolution of

δx = 4× 10−14
m√
Hz

(18)

assuming a current I = 200 mA through the pick–up circuit. For comparison,
the radius of a uranium nucleus is in the same order of magnitude.

4.3 Free Fall Measurement System

After performing many free–fall experiments with a simplified system having
only one single test body, a new system with two test bodies was completed and
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Fig. 14. Sensitivity of the SQUID position detector in dependence on the current I0
in the pick–up circuit.
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has been successfully tested in first free–fall tests. Fig.16 represents a simplified
drawing of the new two–body system. The two concentric test bodies (a) and (b)
are made of lead and aluminium (coated with niobium), respectively. They are
stabilized in the radial direction by meander–shaped coils and can be controlled
in the vertical direction by levitation coils. These coils are supported by special
carriers (c), (d), (e). For instance, (f) denotes the upper levitation coil for the
outer test body and (i) the lower levitation coil of the inner test body. The pick–
up coils required for the position measurement are also attached close to the
test bodies. For each body two pick–up coils are needed as described above. (h)
shows the lower pick–up coil of the inner test body and (g) the upper pick–up coil
of the outer test body. Furthermore all parts are shielded by superconducting
screenings (j). The whole system is housed in a vacuum chamber immersed in
liquid helium at 4.2 K.

The cryostat (20 l liquid helium), the SQUID electronics, the data processing
unit, the control unit and the power supply are mounted in a special structure,
the so–called free–flyer (see Fig.17), which resists the vibrations and shocks at
the beginning and at the end of the drop. The free–flyer itself falls freely inside of
the outer fall capsule, which contains a computer–controlled caging mechanism.
Despite the weightlessness and the rapid deceleration of about 500 m/sec2 (50
g) after numerous drop experiments neither the cryogenic equipment nor the
SQUID electronics have been damaged.

4.4 Free Fall Tests of the Measurement System

Experiments were done to improve the test body position control unit. This unit
fixes the test bodies at the beginning of the drop. Before release, the hanging
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Fig. 15. Resolution of the position detector in dependence on the current I0 in the
pick–up circuit.
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Fig. 16. Simplified assembly drawing of the cryogenic part of the measurement system
for testing the Equivalence Principle including two test bodies, levitation coils, and
pick–up coils for position measurement. See text for further explanation.
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Fig. 17. Scheme of drop capsule (left) and photograph of free–flyer (right).

capsule is under tension from its own weight resulting in a contraction upon
release. This would result in an upwards acceleration of the test bodies. After
vibrations of the system have faded away, the control unit has to center the test
bodies in their working position as fast as possible to attain a long measurement
time for determination of the Eötvös coefficient. For this purpose the control
unit measures the position and the velocity of the test bodies and sends short
rectangular shaped current pulses of a calculated length and amplitude through
the upper and the lower levitation coils, respectively. These coils situated at both
ends of each test body can repel the superconducting test bodies. Theoretically,
two pulses from opposite directions (upper and lower levitation coil, respectively)
are sufficient to attain centering even given an initial velocity. However, after the
two pulses there are small deviations from the aspired position and velocity due
to errors in determination of the initial velocity and position or due to limitations
of the control unit. Therefore, it will be necessary to repeat the procedure several
times. For precision experiments the final velocity of the test bodies relative to
the measurement system should be lower than 0.25 µm/sec to avoid exceeding
the working range of the position detector (see section 3.3).

Fig.18 shows a preliminary result of a free–fall test for the position control of
the inner test body. At the beginning of the drop the test body was magnetically
fixed by a current of 1 A through the upper levitation coil. The following test
sequence starts with a current pulse of 0.5 A through the lower levitation coil
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Fig. 18. Controlling of the inner test body by short pulses through the levitation coils
during a drop; SQUID Signal (upper curve, 14 V ≡ 1 mm displacement); currents of
the levitation coils (lower curves) measured by means of current–voltage converters
(1 V ≡ 1 A).

accelerating the test body. After 40 msec the test body is decelerated again by
a pulse through the upper coil. Both pulses have the same length (30 msec) and
amplitude. Despite of same currents and simular geometry the upper and lower
levitation coils cause slightly different forces on the test body. Therefore, the
test body has not been stopped by the second pulse of the same length but has a
residual velocity. This velocity is measured by the control unit and a short pulse
is send to the lower levitation coil stopping the test body as it is clearly seen in
Fig.17 (t > 1.92 sec).

After both test bodies have been stopped with a sufficient precision in the
final experiments, the sensitivity of the detectors have to be switched to a higher
sensitivity and resolution (but smaller working range) and the determination of
Eötvös coefficient can start3. The position control unit is switched off for the
rest of the drop.

If a higher sensitivity is used, one would see that the test bodies don’t stay
in rest after the controlling process, as it seems in Fig.18, but appear as small
(< 10−6g) acceleration caused by the residual acceleration of the drop capsule.
This acceleration should be equal for both test bodies if η = 0. Beside the
acceleration, the test bodies have a different initial velocity caused by limitation
of the controlling process at the beginning and an unknown initial displacement.

In order to determine the Eötvös coefficient, the displacement of the two test
bodies has to be measured from the end of the controlling process to the end of
3 It is also possible to use two different sensors for each test body. One sensor possessing
a large working range (0.5 mm) is used for controlling the test body. The other
possessing a high resolution is used for the determination of the Eötvös coefficient.
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the drop4. We expect a linear dependence of the displacement on time (caused
by the different initial velocities) (if η = 0), or a parabolic dependence (if η �= 0).
Theoretically, three measurement points would be sufficient to determine η. But
the measurement curves will be superimposed by the noise of the detector and
the environment (magnetic disturbances, vibration of the capsule). Therefore, it
will be better to measure much more points to get the highest possible resolution
for η limited by the noise spectrum and the measurement time. The sampling rate
of the measurement point needed to attain an optimal resolution of η depends
on the bandwidth of the detector. Both parameters are chosen on the basis of
the dynamical performance of the A/D–converter, the memory capacity of the
data recording unit and the measurement time. In the final experiments we will
use a 24–bit A/D converter5 with a sampling rate of 2 kHz and a high–order
lowpass filter with a cut–off frequency of 500 Hz.

5 Conclusions

Due to their exceptional sensitivity and universality, DC–SQUIDs made of clas-
sical low–Tc materials like niobium and lead can be applied in position detec-
tors providing an unusually high position resolution. On the basis of a set of
two wire–wound plunger–type pick–up coils, the position of a superconducting
test body could be measured with a noise limited resolution of the order of
4 × 10−14 m/

√
Hz. Using this sensor technique, gravitational experiments can

be performed such as the test of the validity of the WEP on earth by using drop
tower facilities or in space like the current STEP project of NASA/ESA.

On the basis of this type of position detector, it would be possible to prove
the validity of the WEP with an accuracy of about η = 10−15 on earth by using
the drop tower facility in Bremen. Because of disturbing effects (such as magnetic
background fields, mechanical vibrations of the drop capsule after release, liquid
helium tides, etc.) the accuracy will be limited to an estimated level of η = 10−13.
Nevertheless, this would be more precise by at least one order of magnitude than
the most accurate ground based experiments performed by Roll, Krotkov, and
Dicke [1,2] using modern torsion balance equipments.

On the other hand, drop tower facilities like the Bremen Drop Tower seem to
be an appropriate and excellent tool for the ground based experimental test and
characterisation of all components of SQUID based position detector systems as
required, e.g., for the proof of the validity of the WEP in space.
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Space Accelerometers: Present Status

Pierre Touboul

Physics, Instrumentation and Sensing Department
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92322 Châtillon Cedex, France

Abstract. In view of space missions, for accurate recovery of the Earth gravity field,
for the test of the equivalence principle and for the observation of gravity waves in
particular, specific inertial sensors are developed exhibiting very high resolution and
limited full scale range suited for in orbit operation. These sensors are constructed
around a high density proof–mass with a very fine and stable silica gold coated core. The
proof–mass position and attitude are measured with highly sensitive capacitive sensors
and are controlled with electrostatic actuators. The configuration and the major design
parameters of these instruments are described in relation to the expected performances.
The present status of the development of these instruments is shown together with the
associated space mission scientific objectives. The main experimental results obtained
during the ground qualification of these accelerometers are also presented.

1 Introduction

Space missions are not only dedicated to the discovery and the observation of
the universe, as in astrophysics or in planetary sciences, but space provides
also a specific microgravity environment, the advantage of which is exploited in
crystallography, biology, and physics experiments. Moreover, it provides a fine
possibility of global and accurate observation of the Earth.

For the micro–gravity experiments, the acceleration levels of the space plat-
forms have to be monitored especially in the very low frequency range from 1 Hz
down to the orbital frequency of about 1.7×10−4 Hz, and with a sensitivity bet-
ter than the micro-g. Such a sensitivity must even be increased for the control of
dedicated isolated bench [1] or for the control of spacecraft. The DC acceleration
and the vibration levels on board the Spacelab shuttle have been monitored [2]
in orbit to less than 10 micro-g (1 g ∼ 9.8 m/s2) mean value, depending on the
orbit altitude between 300 km and 500 km and on the orientation of the shuttle
with respect to its velocity vector. The fluctuations in the 1 Hz bandwidth reach
100 micro-g and time to time 1 milli-g while the local vibrations increase at
upper frequencies up to a hundred of milli-g. This is far from the simple idea of
punctual weightlessness. In fact, the spacecraft is not only submitted to the or-
bital gravity field but also to the atmospheric drag of the Earth (or the planet),
the radiation pressures from the Sun and the Earth, the magnetic forces induced
by the coupling between the planet’s magnetic field and the spacecraft charge
(Lorentz force), or its magnetic susceptibility or momentum. Furthermore, when
not at the centre of mass, the effect of the gravity gradient tensor has to be
taken into account as well as the angular and the centrifugal acceleration.

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 273–291, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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Table 1 provides evaluation of the amplitudes of these accelerations for two
recently designed satellites, the first one at very low altitude for a geodesy mis-
sion, the second one at higher altitude for space fundamental physics. Obviously,
at 36 thousand kilometres, the geosynchronous satellites are no more affected by
the atmospheric drag and the Earth’s gravity gradient.

For what concerns the International Space Station, it is designed to provide a
space laboratory micro–gravity environment limited to 2 µg for frequency lower
than 0.1 Hz and with a f law increase for upper frequencies [3].

Table 1. The Esa GOCE mission is devoted to the Earth gravity field recovery (launch
foreseen in 2004) with a 800 kg satellite; the CNES µSCOPE mission aims at the
Equivalence Principle test (launch foreseen in 2004) with a micro-satellite of 120 kg;
both missions require a very fine orbit and altitude control.

GOCE satellite µSCOPE satellite

altitude 250 km 700 km

atmospheric drag 1.5 × 10−5 m s−2 6 × 10−8 m s−2

radiation pression 6.1 × 10−8 m s−2 3.7 × 10−8 m s−2

gravity gradient 4.1 × 10−6 m s−2/m 3.4 × 10−6 m s−2/m

angular acceleration 1.4 × 10−6 m s−2/m 1.1 × 10−6 m s−2/m

centrifugal acceleration 1.5 × 10−5 m s−2/m 3.3 × 10−6 m s−2/m

In order to finely measure these environments, specific sensors exhibiting very
low bias and high resolution, hundred times better than the accelerometer used
in aircraft for inertial navigation have to be developed.

For industrial applications, accelerometers exhibiting a full scale range of up
to several hundreds of g and exhibiting parts of g sensitivity are available [4].
The piezoelectric accelerometers exploit the electrical potential variations of a
piezoelectric device which internal constraints are linked to the relative motion
of an inertial mass. These very robust and small instruments present very large
bandwidth but no measurement at low frequencies.

For aircraft navigation, the accelerometer accuracy has to be better than
one hundred micro-g, after data processing taking into account the instrument
calibration and thermal sensitivity, in the important range of temperature from
−50◦C to +90◦C [5]. Most of these accelerometers rely on a spring–mass or
a pendulum-mass device with a position sensing of the mass. When the mass
motion is servo–controlled through magnetic actuators for instance, the acceler-
ation of the instrument frame is deduced from the measured applied force. The
stability of the spring or of the hinge which sustains the mass is of peculiar im-
portance in order to obtain the accelerometer bias stability [6]. The servo–loop
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operation leads fortunately to one single point condition of operation (deviation
and constraint) to the benefit of the behaviour stability.

New generation of vibrating beam accelerometers are now proposed for air-
craft navigation. The natural mode of vibration of a silica or a quartz beam
varies with the applied constraints which are induced by a mass fixed at one
of its extremity. The vibrations are excited by piezoelectric or capacitive means
and the oscillator frequency is measured with a counter. These accelerometers
exhibit now better than one hundred micro-g accuracy in a large operating range
of temperature while the resolution can be in the order of one micro-g. The main
interests consist in their easy way of production, few cm3 sizes and the already
digital outputs [7].

All these accelerometers can be adapted to some space applications but
present for the quasi–steady acceleration a non sufficient resolution because of
their too important full range and bias, not suited to the in orbit acceleration
levels.

Furthermore, scientific missions need much better performance. In the field of
the Earth’s observation, two main applications of the ultra–sensitive accelerom-
eters merge. First, the measurement of the surface forces acting on low Earth
orbit satellites allows to eliminate the non gravitational effects in the accurate
determination of the orbit. This can be simply exploited for the autonomous
navigation of the satellite, the orbit of which is then predictable. Associated to a
fine trajectory recovery from GPS receiver or Doris on board system, this yields
to the determination of the Earth’s gravity field as in the CHAMP project or
the DORIS D micro–satellite project [8]. For the determination of the gravity
anomalies at smaller geographical scale, from wave lengths of several thousands
down to one hundred kilometres (and so of the higher spherical harmonics of
the gravity potential) two other techniques are now elaborated, the satellite to
satellite tracking and the gravity gradiometry [9], [10]. For both, accelerometers
with expected resolution up to the pico-g or better are necessary [11].

Future scientific missions in the domain of Fundamental Physics require also
satellites flying drag–free, which means that all non-gravitational disturbances
acting on the satellite are compensated by throttling the thrust with closed–loop
controls exploiting acceleration sensors. This is the case of the LISA mission
satellites for the observation of the gravity waves [12]. The in orbit test of the
Equivalence Principle is also proposed by considering ultra–sensitive differential
accelerometers including two test-masses made of different materials [13], [14].
For these missions, the objectives of sensitivity are much better than the femto–g.

These outstanding resolution cannot be achieved with instruments able to
measure or even support in their nominal measurement mode one g. Specific
space accelerometers must be conceived taking advantage of the in orbit en-
vironment that much reduces the applied acceleration to sustain especially on
board future drag–free satellites.
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2 Accelerometers Dedicated to Space

Aircraft pendulum accelerometers have been optimised for space applications;
this is the case of the sensors of the SAMS system which has been used to
characterise the shuttle microgravity [15]. In fact, the sensor core is quite not
modified but the servo–loop electronics of the mass control can be changed in
order to increase the accelerometer scale factor from 0.1 V/g to 100 V/g. The
resolution is then modified from 0.5 µg/

√
Hz to about 50 nano-g/

√
Hz as seen

in Fig.1.

ASTRE

QA 3000

0.01 0.1 1 10 Hz

10−9

10−8

10−7

10−6

g/
√
Hz

Fig. 1. The pendulum accelerometer is mounted on an antiseismic testing bench; the
residual acceleration of the bench, which has a tilt natural mode around 0.3 Hz, is
measured with the ASTRE space accelerometer (presented below) to less than 1nanog
for frequency lower than 0.1 Hz; the intrinsic noise of the QA 3000 is run printed out.

To go further in resolution, electrostatic space accelerometers have been de-
veloped since the seventies. The Discos and the Cactus instruments have been
respectively launched in 1972 and 1975 for drag compensation control or drag
measurement [16], [17]. Both was designed around a high density proof–mass,
the motion of which is measured with three capacitive sensors. The Cactus ac-
celerometer (Capteur Accélérométrique Capacitif Triaxial Ultra Sensible) was
designed to measure the surface forces exerted on a satellite by the aerodynamic
drag and the solar radiation pressures. The spherical proof–mass position is con-
trolled but not the rotation. This simple design is well suited for high sensitivity
but incompatible with high accuracy: no matter how carefully the instrument is
built, the residual geometric or electric defects of sphericity make the sensitivity
of the accelerometer fluctuates as the proof–mass turns.

The Miniature ElectroStatic Accelerometer (MESA) includes a thin-walled
cylinder as a proof–mass with a thin central flange and operates in various space



Space Accelerometers 277

missions [18]. Initially developed by Bell Aerospace as a one–axis accelerometer
for rotating accelerometer gravity gradiometre, the MESA is presently exploited
as a three axis space accelerometer taking advantage of its five degrees of freedom
electrostatic “suspension”. It is in particular one of the sensors of the Orbital
Acceleration Research Experiment (OARE) currently used by NASA to mea-
sure the space shuttles on-orbit linear acceleration within the sub–microgravity
regime. The resolution of the sensor is better than 10 nanog with 25 s integra-
tion and its bias and scale factor are calibrated in orbit by rotating the MESA
sensor mounted on a dual–gimbals platform [19]. The European QSAM (Quasi-
Steady Acceleration Measurement) instrument follows the same approach with
two pairs of QA 3000 pendulum accelerometers, each pair being mounted on a
flipping device for calibration and associated with a static triad of accelerome-
ters. Due to the use of QA3000, the resolution is of the order of 5× 10−7 g [20].
The three instruments, QSAM, OARE and ASTRE have flown in 1996 during
the same shuttle mission MSL-1.

Superconducting accelerometers, with cryogenic magnetic levitation instead
of room temperature electrostatic one, have been developed for ultra–sensitive
gravity gradiometry [21]: the cylindrical mass being maintained in radial direc-
tion with a blade, highly stable magnetic stiffness are induced between the mass
and the instrument cage and along the axial direction by superconducting loops,
associated with squid position sensing. Same type of instrument configuration
are also being defined for three axis measurement but without any mechanical
stiffness and with a three axis magnetic suspension [13].

3 Electrostatic Servo–Controlled Accelerometer
Operation

The principle of operation of a servo–controlled electrostatic accelerometer is
based on the measurement of the electrostatic force necessary to maintain the
accelerometer proof–mass motionless with respect to the sensor cage. For space
applications, the proof–mass can be fully suspended in the three directions,
suppressing any mechanical contact to the benefit of the resolution and yielding
to a three axis accelerometer.

The performance relies on the resolution of the proof–mass position sensor,
the very limited stiffness that links the test–mass to the accelerometer cage
and the very weak level of the test–mass motion disturbances, Γdtb due to the
environment (magnetic, electric, thermal), and independent to the electrostatic
suspension. Let us consider the expression of the test–mass motion xmass inside
the sensor cage:

s2xmass = g + Γelec ± ω2
p (xmass − xcage) and s2xcage = Γspcft (1)

with s the Laplace derivative variable, Γelec the acceleration from the electro-
static suspension, g the gravity field and ωp the angular frequency associated to
the parasitic uncontrolled stiffness. Then the measurement of Γelec provided by
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the accelerometer leads to the acceleration of the spacecraft Γspcft:

Γelec =
GLoop

GLoop + s2 ± ω2
p

(
Γspcft − Γdtb +

(
s2 ± ω2

p

)
xnoise − mg

mi
g

)
(2)

with GLoop the gain of the servo–loop which controls the proof–mass degree
of freedom xmass, GLoop � 1 at low frequencies and with xnoise, the capacitive
sensor noise expressed in displacement according to the geometry of the config-
uration electrodes–mass.

One of the advantages of the electrostatic suspension is the use of very weak
acceleration with measurable level of applied voltages: electrostatic actuators
with sensitivity lower than one nano-g per Volt can be achieved. Furthermore,
when the position of the mass is servo–controlled, the difference xmass − xcage is
almost null in the frequency bandwidth of the suspension where the gain of the
servo–loop is important. Then, the optimisation of the sensor–head configuration
which aims at reducing Γdtb and at producing well identified Γelec is made easier
by the steady geometrical configuration.

Because the electrostatic forces remain normal to the faces of the mass, as-
sumed to be a perfect conductor (then an electrical equipotential), a cubic proof–
mass with parallelism and perpendicularism deviations less than one arc second
ensures very low coupling between the three pairs of servo–control channels that
keep it motionless in position and attitude. And thus low coupling of the sensitive
axis measurements are obtained.

The pair of electrodes corresponding to each loop can be used for both capac-
itive position sensing and electrostatic restoring force generation (Fig.2). From
the measurement of the capacitive sensor, a corrector determines the opposite
drive voltages to be applied on the opposite electrodes for the generation of
the electrostatic field. A unique sine wave pumping signal Vd is applied to the
proof–mass for the six capacitive sensors. A biasing reference voltage can be
also applied to the proof–mass or to both electrodes in order to make linear the
electrostatic actuators. Both electrodes attract the proof–mass with forces F1
and F2 proportional to the gradient of the capacitance and to the square of the
electric potential differences between the proof–mass and the electrodes. The
resulting force F (F = F1 + F2) is expressed by:

F =
1
2

(
∇C2 (V2 − Vp)

2 +∇C1 (V1 − Vp)
2
)
= mΓelec (3)

In case of a perfect configuration symmetry with:

∆C2 = −∆C1 = ∆C V1 = −V2 = V (4)

the resultant force F is proportional to V :

Γelec =
1
m

F = 2∇C Vp V (5)

The loop provides a cold damping of the proof–mass motion and a strong
control at frequencies lower than the closed loop natural frequency, f0c . The
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˜
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Fig. 2. Scheme of one servo–loop channel.

output network provides the measurement of the actual applied voltage V which
constitutes the analogue output of the accelerometer. H(s) being the linear re-
lation provided by the electronics between V and the capacitive sensor output,
the expression of the measure is:

Measure = Γelec =
H(s)

H(s) + s2 ± ω2
p

(
Γspcft − Γdtb − g +

(
s2 ± ω2

p

)
xnoise

)
(6)

and the expression of the mass displacement:

xmass = xcage − H(s)
H(s) + s2 ± ω2

p

xnoise +
1

H(s) + s2 ± ω2
p

(Γspcft − Γdtb − g) .

(7)

The electrostatic suspension bandwidth can be selected much larger than the
measurement frequency domain without affecting the accelerometer resolution.
Then, the accelerometer frequency response is flat (first term of the expression
of the measure is almost one) and the proof–mass motion is very limited to the
benefit of the accelerometer linearity and stability of characteristics.

4 The ASTRE and STAR Accelerometers

On the basis of the previously described concept, several configurations of the
sensor-head with its associated electronics have been developed according to the
mission requirements.

ASTRE (French acronyms of Accelerometre Spatial TRiaxial Electrosta-
tique) has been optimised for the monitoring of the manned spacecraft envi-
ronment and its configuration is well suited to realise a three axis accelerometer
with the possibility to perform ground tests under normal gravity [22].
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Fig. 3. ASTRE–STAR sensor–head.

The mechanical core of the sensor is defined with a silica core surrounding a
72 grams parallelepiped proof–mass made of titanium alloy, 4 cm side and 1 cm
height (see Fig.3). The core is internally gold coated and the electrodes face the
proof–mass by pair. The mass is ground with parallelism and perpendicularly
deviations less than 10−5 rad, that ensures the high uncoupling between the three
axes. The asymmetry of the configuration (not a cubic proof–mass) is required to
perform the electrostatic suspension of the mass under one g, the electrode areas
being larger along the vertical axis and the distance between the proof–mass and
the electrodes being reduced to a few tens of microns. An electrostatic field as
strong as 3 × 107 V/m can be necessary to sustain the proof–mass. The core
is integrated inside a tight housing ensuring a secondary vacuum of 10−6 mbar
and a magnetic shield to the benefit of the mass motion disturbances.

According to the mission, the ASTRE configuration can be slightly modified:
the range of the accelerometer can be settled by changing the proof–mass mate-
rial (the proof–mass density can vary from 2.2 g/cm3 for Silica up to 20 g/cm3

for Platinum) without modifying the silica core; the proof–mass sizes can also be
modified and thus the gaps between the electrodes and the proof–mass can be
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adjusted between 30 µm and 1 mm; the strength of the electrostatic actuators
being reduced, the accelerometer sensitivity can be increased.

The analogue servo–loop electronics are designed around six capacitive sen-
sors associated to six electrostatic actuators. The sensitivity of the capacitive
position sensing must be settled to the electrode configuration and sizes. The
areas of the two z electrodes are for instance 2 cm2 and the distance to the mass
is 75 µm leading to capacitance of 24 pF. With a sensitivity of 0.3 V/µm, the
measured resolution of the position sensing is 2×10−12(1+0.4/f)1/2 m/

√
Hz as

shown in Fig.4 and with a negligible back–action of the electrical sensing signals
on the mass acceleration.

Fig. 4. Capacitive position sensing resolution with ASTRE accelerometer configuration
and electronics; –120 dB equals 1 µV sensor output i.e. 3.3 picometre

In spite of the differences of the geometry, the characteristics of the three
outputs of the ASTRE accelerometer are very similar with a resolution of 1 nano-
g and a full scale range of one milli–g.The ASTRE accelerometer flew three times
on board the Columbia shuttle in 96 and 97 for the missions STS-78, STS-81
and STS-81R. Integrated inside its host system, the Microgravity Measurement
Assembly (MMA), ASTRE collected data during the whole missions. Fig.5 shows
the statistic distribution of the measured acceleration during the third mission,
demonstrating that the microgravity level is unfortunately not reached during a
wide window [23].

The Fig.6 illustrates the impact on the Spacelab acceleration in translation
of the actuation of the Columbia shuttle thrusters during the attitude control
phase of the shuttle. It is to be noticed that the average level is very close to
zero demonstrating the weak instrument bias.

From the ASTRE experience, the STAR accelerometer has been defined for
the German CHAMP mission (CHAllenging Micro-satellite Payload for geophys-
ical research and application) dedicated to Earth’s observation. Five scientific
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Fig. 5. Distribution of time percentage per mission day when the measured acceleration
is lower than 10 µg, between 10 and 100 µg, 100 µg and 1000 µg or larger

instruments constitute the satellite payload: two magnetometers for the global
and accurate Earth’s magnetic field mapping, one digital ion drift meter to de-
liver complementary measurements of the Earth’s electrical field, one GPS dual–
frequency receiver contributing to the atmospheric analysis, density, pressure
and temperature sounding but devoted first to the precise orbit determination
with centimetre accuracy and one STAR (Space Three–axis Accelerometer for
Research) accelerometer [24], [25].

Fig. 6. Measured Spacelab acceleration during the throlling of the shuttle attitude
control thrusters
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Fig. 7. STAR sensor unit before integration in the CHAMP satellite

The CHAMP satellite is scheduled to be launched in April 2000 by a Russian
Kosmos rocket at an altitude of 550 km in a circular orbit with a 100 degree
inclination, the eccentricity being less than 0.01. During the five years of the
mission, the orbitography will be finely performed and the accelerometer, inte-
grated at the centre of mass of the satellite with an accuracy of a few millimetres
shall measure in a frequency bandwidth from DC to a few tenth of Hertz the
air drag, the solar and Earth radiation pressures and the attitude manoeuvre
effects aiming at the Earth’s gravity field up to degrees and orders of about 50. A
by–product of the accelerometer measurements will be the determination of the
atmospheric density variations, in particular at the lower altitude of the mission.

STAR has an internal core configuration similar to ASTRE. This six–axis
accelerometer provides the three linear accelerations along the instrument sen-
sitive axes and the three angular accelerations about these axes. STAR presents
a measurement range of 10−4 m s−2 and exhibits a resolution of better than
3× 10−9 m s−2 for the y– and z–axes and 3× 10−8 m s−2 for the x–axis within
the measurement bandwidth from 10−4 Hz to 10−1 Hz. The measurements are
integrated over one second before delivery to the satellite data bus. In orbit,
STAR x–axis is vertical from the Earth, while the y–axis is normal to the orbit
and the z–axis is along track. The Fig.7 shows STAR stand–alone instrument
constituted by a sensor core depicted previously and integrated inside a tight
housing with servo–loop electronics boxes around, all packaged in the same unit.
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Fig. 8. STAR resolution as demonstrated with ground tests (left) and free fall tests
in drop tower (right); the accelerometer is measuring in both case the residual level of
vibrations of the testing bench maintained horizontal or of the falling capsule

Its total mass is 7.8 kg, inside a volume of 19.5×18.5×16.5 cm3 and its nominal
power consumption is 1.7 W.

The STAR performance has been verified in laboratory as far as it is possi-
ble in presence of seismic vibrations and with a mass levitation under one g by
specific booster electronics. The y and z accelerometer axes being maintained
horizontal, measurements of residual low frequency vibrations of the testing plat-
form have been performed with a resolution of 10−8 m s−2/

√
Hz at frequencies

lower than 0.1 Hz corresponding to the requirement of 3 × 10−9 m s−2 rms in
the measurement bandwidth (see Fig.8). The accelerometer low level of bias (less
than 10−5 m s−2) has been also verified in free fall in the Bremen drop tower
[26].
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Fig. 9. Diamond configuration gradiometer.

5 From CHAMP to GRACE and GOCE Instrument

With an up–date of the STAR configuration by modifying the core geometry, the
position sensing and the electrostatic actuator sensitivities, the SuperSTAR ac-
celerometer has been defined for the Gravity Recovery And Climate Experiment
(GRACE) mission [27]. This instrument presents two modes of operation with
two different ranges: the first one is more robust ensuring the mass levitation
with a strong control, the second one corresponds to a full measurement range
of 5 × 10−5 m s−2 with a resolution of 10−10 m s−2/

√
Hz. Two flight models

of SuperSTAR accelerometer are being produced in order to be integrated in
the two GRACE satellites in the first half of 2000. The mission aims at the
recovery of the Earth’s geoid with an accuracy of 3.5 mm and a geographical
resolution of 200 km. The satellite to satellite tracking performed with a micro–
wave link at altitudes between 500 km and 300 km provides the measurement of
their relative velocity with an accuracy better than 1 µm s−1 depending on the
over flight gravity anomalies and on the satellite surface forces measured by the
accelerometers [28].

As a complement to the previous JPL mission, the Gravity and Ocean Cir-
culation Explorer (GOCE) mission has been selected in 1999 by the European
space agency in the frame of the Earth explorer program [29], [30]. On board
a drag–free satellite, at an altitude as low as 250 km, the gravity gradiometer
shall provide the accurate measurements of the Earth’s gravity gradient tensor
components for the determination of the upper harmonics of the potential [31].
This gradiometer is composed of six identical electrostatic accelerometers in a
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diamond configuration and accommodated on a rigid and stable Carbon–Carbon
structure inside a double chamber thermal enclosure. The theoretical models of
the accelerometer operation at room temperature, which are based on the ex-
perimental results obtained with the STAR and SuperSTAR qualifications, have
been exploited to demonstrate the adequacy of such an instrument for the con-
ditions of the very soft environment of GOCE satellite. With maximum levels
of acceleration less than 10−6 m s−2, due for a large part to the Earth gravity
gradient itself, and temperature variations lower than 10 mK over the orbit, the
expected resolution of the accelerometers is 4 × 10−13 m s−2/

√
Hz in the fre-

quency bandwidth from 5 × 10−3 Hz to 0.1 Hz. Taking into account the 10−5

rejection factor of the residual satellite acceleration in translation and attitude,
the gradiometer resolution is evaluated to better than1 5 mE [32].

6 Electrostatic Accelerometers to Test the Equivalence
Principle in Space

The objective of the µSCOPE space mission that we presently propose to CNES
(French national Agency) is to improve by a factor one thousand the test of
universality of free fall leading to an accuracy of 10−15 [33]. The laboratory
experiments for the Equivalence Principle (EP) test exploit torsion pendulum
and have to deal with the environmental instabilities and in particular the Earth
gravity gradient fluctuations [34]. Recent results have been obtained by consider-
ing the Moon–Earth laser ranging data but the material composition of the two
bodies is not sufficiently well known [35]. Space experiment takes advantage of
the in orbit soft conditions and the possibilities of long term signal integration.
The usual ‘Galileo type’ experiment consists of comparing the relative motion of
two free falling test masses made of different materials. Another way to perform
the EP test is to control at null the relative mass motion (the masses having a
free common fall motion in orbit) so that any EP violation appears through the
measured forces necessary to nullify this relative motion. Then a much better
management of the environment disturbances is possible because of the steady
configuration. This is why we propose to perform this experiment on board a
drag–free satellite with two servo–controlled electrostatic accelerometers, one
implemented inside the other one [36]. Thus, the two test–masses are centred
and submitted to the analog Earth and satellite gravity field: the ratios Mg/Mi,
gravitational mass Mg over the inertial mass Mi, of the test–masses made of
different materials will be compared . The µSCOPE payload is in fact composed
of two of these differential accelerometers operating at room temperature: two
pairs of test masses are then compared, one with the same material, the second
with two different materials leading to a double differential measurement to the
benefit of the rejection of the common motion disturbances. The satellite spin
about the perpendicular axis to the orbit varies the orientation of the Earth
gravity field in the instrument reference frame leading to a research of the viola-
tion signal at a well known frequency and helps to the discrimination from other
1 1 E = 1 Eötvös = 10−9 s−2.
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effects like thermal or gravity gradient ones. With a signal integration over 20
orbits (105 seconds), the difference of the two test–mass accelerations shall be
measured with a resolution of 10−12 m s−2/

√
Hz in the vicinity of the sum of

the orbital and spinning frequencies, about 10−3 Hz [37].
The expected matching of the characteristics leads to a 10−4 rejection of the

accelerations applied in common mode on the two concentric accelerometers and
the necessary drag compensation system of the satellite must then reduce these
accelerations to levels of less than 10−8 m s−2/

√
Hz.

The cylindrical test masses present diagonal inertia matrices to limit the
effects of the satellite and Earth gravity gradient and the common revolution
symmetry axis is the EP test sensitive axis. The electrode configuration presented
in Fig.10 allows the measurement and the control of the 6 degrees of freedom
of the two test-masses. While the eight quadrant electrodes associated by pairs
allow the control of the radial translations and rotations, the two cylindrical
sensing electrodes at the ends of the test–masses are used to control motionless
the test–masses along the axial direction quite independently to the mass relative
position that is adjusted in orbit to a few microns.

The 10−12 m s−2/
√
Hz expected resolution of this instrument is deduced

from the three major noise sources. At

Rin = 10, Rext = 15

Rin = 25, Rext = 30

Fig. 10. Differential electrostatic ac-
celerometer for the in orbit test of the
Equivalence Principle.

lower frequencies, the thermal instabil-
ities induces radiation pressure and ra-
diometer acceleration fluctuations due
to residual gas for the latter. At higher
frequencies, the position sensing res-
olution affects the resolution with a
square frequency law. Between, the
thermal noise of the mass motion is
derived from the damping factor esti-
mated from dedicated laboratory ex-
periments and mainly due to the thin
5 µm wire used for the charge control
of the mass [38], [39].

7 Space Gravity Wave Antenna

The LISA space mission (Laser Interferometer Space Antenna), under study by
US and European Space Agencies, aims at the observation of the low-frequency
astrophysical gravitational radiation with cosmological and fundamental physics
objectives [12]. The interferometer is realised with a triangle formation of three
drag–free spacecraft in heliocentric orbit. At the centre of the satellite, the proof–
masses of inertial sensors are the mirrors at each end of the 5×106 km interferom-
eter arms. The optical bench of each satellite is highly stabilised in temperature
(10−6 K/

√
Hz) and accommodated around the inertial sensors, the YAG laser

beam being reflected directly on one side of masses. Then, the proof–masses
constitute the inertial references, free of any acceleration disturbances, with an
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expected level of a few 10−15 m s−2/
√
Hz in the very low frequency domain

from 10−4 Hz up to 10−2 Hz . Furthermore, the inertial sensors are used by the
drag–free satellite subsystem for the compensation of the drag due to radiation
pressures. So, the satellite carries the optical bench and is a shield for the mass
that the satellite follows accurately, at 10−9 m/

√
Hz, in the same low frequency

bandwidth, in order to limit the mass disturbances, satellite gravity gradient for
instance.

As in the case of µSCOPE configuration, this sensor presents a preferential
axis (along the laser beam) and is optimised for a very weak range of operation
thanks to the drag–free satellite. The accelerometer is built around a 1.5 kg
bar test–mass made of Gold–Platinum alloy leading to a very weak magnetic
susceptibility. Its cage is made of ultra low expansion (ULE) silica as well as
its reference plate fixed on the optical bench taking advantage of the quite null
coefficient of thermal expansion at the 25◦C operating temperature [40].

The instrument housing is opened to the space vacuum in order to obtain a
residual internal pressure less than 10−6 Pa. The principle of operation of the
sensor is similar to the previous ones except that the satellite drag compensa-
tion system acts the electrical satellite thrusters in order to nullify the voltages
that should be applied on the electrodes to keep the proof–mass motionless. In
this way, no electrostatic forces will be applied to the proof–mass within the
frequency bandwidth of the satellite control loop, larger than the interferometer
measurement bandwidth. So, the inertial sensor has not to deliver an accurate
measurement of acceleration with well known and steady scale factor but the
configuration is focussed on the reduction of all parasitic forces. No discharging
wire is envisaged to control the proof–mass potential for such a room tempera-
ture sensitive sensor. So an active control of the mass charge is necessary. The
Fig.11 presents the silica core of the first laboratory model that has been in-

Fig. 11. Inertial sensor for gravity wave space interferometer: first laboratory model
core with a parallelepipedic configuration.
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Electrostatic accelerometers developed at ONERA

m/s2 or
m/s2/

√
Hz

Room temperature

Low temperature
EP test

Room temperature
EP test

Drag–free sensor

Earth gradiometry
mission

Sat to Sat tracking
for geodesy

mini satellite mission
micro gravity and
vibration survey

Fundamental
Physics

10−15 10−13 10−11 10−9 10−7 10−5 10−3 10−1 10 102

> 2009 LISA Drag Free Sensor

> 2005 STEP accelerometer

2003 MICROSCOPE

2004 GOCE/GRADIO

2001 GRACE/SuperSTAR

2000 CHAMP/STAR

1996–1997 ASTRE

Cryogenic accelerometer

GRADIO derived accelerometer

DRAG FREE sensor

Fig. 12. Electrostatic space accelerometer range and performance.

tegrated with a silica mass in order to perform laboratory test under normal
gravity: the levitation of the mass is performed and the electrostatic configu-
ration is under test in order to demonstrate its compatibility with very weak
induced stiffness, lower than 10−6 N/m.

8 Perspective

One of the major advantages of space environment is the low level of acceler-
ation disturbances. On one hand, the survey of these levels require specific in-
strument, on the other hand, the dedicated space accelerometers take advantage
of the specific range of operation and measurement. The concept of electrostatic
servo–controlled accelerometer is well suited for these space applications: the
electrostatic forces give the possibility to generate very weak but accurate ac-
celerations while the capacitive sensing offers a high position resolution with
negligible back reaction.

The Fig.12 summarises the different models that are under development or
have been already produced for space missions. The large flexibility of config-
uration and operation allow many mechanical sensor configurations. Moreover,
the present development of digital servo–loop electronics will permit to cali-
brate in orbit these instruments and to adjust the parameters of their operation
[39]. This is now mandatory: the outstanding performance, needed by the future
space mission s and expected because of the drag compensation system of the
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satellite, are too far from the test accuracy in the laboratory, limited by human
activities and Earth gravity field. The room temperature operation facilitates
the integration on board the satellite. Nevertheless, cryogenic temperatures may
be necessary to improve further the accelerometer resolution. This is why the
operation of such an instrument at Helium temperature has been successively
performed and prepare future physics investigations.
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XI, 1997).

39. V. Josselin: Etalonnage en orbite des accéléromètres ultrasensibles pour le test du
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Abstract. The appearance of new fundamental forces and extra-dimensional modi-
fications to gravity in extensions of the Standard Model has motivated considerable
interest in testing Newtonian gravity at short distances (� 10−3 m). Presently a num-
ber of new gravity experiments are searching for non-Newtonian effects in the ranges
∼ 10−4–10−3 m. However, as challenging as these experiments are, formidable new
obstacles await the next generation of experiments which will probe gravity at dis-
tances � 10−4 m where Casimir/van der Waals forces become dominant. Here we will
review the motivation for conducting such very short distance gravity experiments,
and discuss some of the new problems that may arise in future experiments. Finally,
we suggest schematic designs for null experiments which would address some of these
problems using the “iso-electronic” and “finite-size” effects.

1 Introduction

When Isaac Newton formulated his law of universal gravity over 300 years ago,
he provided the first mathematical description of one of the fundamental forces
of nature. Yet, physicists have realized only relatively recently that tests of New-
tonian gravity can still provide a unique window into new physics [1–7]. Within
the past 20 years, experimentalists have put Newtonian gravity to the test for
distance scales 10−3–1015 m by searching for violations of the weak equivalence
principle (WEP) and inverse square law (ISL). The fact that no such violations
have been observed places stringent constraints on extensions of the Standard
Model that would naturally lead to such effects [1]. Despite this effort, a number
of authors have pointed out that very little is known of the validity of Newtonian
gravity at distances � 10−3 m [8–12]. Several experimental groups are currently
attempting to extend these limits down to 10−4 m [9,13,14], which is near the
point where Casimir/van der Waals forces overcome gravity to become the dom-
inant force between neutral, non–magnetic bodies. This strong intermolecular
force background will become a major challenge for experimentalists who at-
tempt to probe gravity at much smaller distances. The purpose of this paper is
to show that such experiments are worth the effort despite the new difficulties,
and to suggest ideas which may be useful in detecting new forces of gravitational
strength against a strong intermolecular force background.

We begin by examining the theoretical motivation for studying Newtonian
gravity and the phenomenology used to characterize non-Newtonian effects which
would be the signal of new physics in a gravity experiment. After briefly review-
ing the current constraints on new forces achieved by longer distance gravity
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experiments (� 10−3 m), we will see that new problems arise when one at-
tempts to set comparable limits in the Casimir/van der Waals regime (� 10−4 m)
where intermolecular forces become large. We then investigate these problems
quantitatively by computing the forces between two parallel plates over a range
of separations. Finally, we propose two schematic designs for null experiments
designed to subtract out the unwanted intermolecular and gravitational back-
grounds using the “iso-electronic” and “finite-size” effects. These will hopefully
allow one to search for signals of new physics at very short distances in the
presence of Casimir/van der Waals forces.

2 Theoretical Motivation and Phenomenology

2.1 Overview

The Standard Model currently provides an adequate description of the electro-
magnetic, weak, and strong interactions within the framework of quantum field
theory. However, a consistent description of quantum gravity has yet to be for-
mulated despite intense work over the past fifty years. The lack of a quantum
theory of gravity currently provides much of the motivation for studying exten-
sions of the Standard Model which would bring all the fundamental forces into
the quantum realm. In fact, many believe that the present Standard Model is
really only an effective theory which would be superseded at much higher ener-
gies by a more fundamental theory, such as string or M-theory [15,16]. One of
the main problems with these more fundamental theories is that, despite their
purported mathematical beauty, many of their principal consequences lay far be-
yond the reach of most foreseeable experiments. It is therefore vital to investigate
the low-energy limits of these fundamental theories to allow experimentalists the
opportunity to constrain the proliferation of models which would otherwise go
unchecked.

It is against this backdrop that one should view recent and future experiments
testing Newtonian gravity. Many extensions of the Standard Model, including
string theory, contain new light bosons which would manifest themselves as new
fundamental forces[1,6,7,12]. These new forces would compete with the other
known forces, but they would most likely be revealed in a gravity experiment
for several reasons. First, in many ways gravity remains the least understood
of the fundamental forces and is relatively untested over a wide range of dis-
tance scales. Second, any new forces probably couple very weakly with matter—
otherwise they would have been seen already. Since gravity is by far the weakest
fundamental force, it sets a natural scale from which to measure new weak forces.
Third, there are two signatures of gravity which help one extract a signal from
the background of other forces: 1) Since the gravitational force couples to mass,
it obeys the weak equivalence principle (WEP), so violations of the WEP would
indicate the presence of a non-gravitational force. 2) The Newtonian gravita-
tional force between point particles obeys an inverse square law (ISL), hence
any departures from the ISL might be attributed to new forces. Finally, New-
tonian gravity is the weak-field, non-relativistic limit of General Relativity, a
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theory in which gravity is seen as a manifestation of spacetime that has been
curved by mass-energy. Therefore, any theory that impacts our understanding
of space and time must involve gravity. This is important because string the-
ory requires that there exist more than three spatial dimensions, the new extra
dimensions being rendered invisible to current experiments by some yet-to-be-
understood mechanism. As will be discussed below, recent models suggest that
these new dimensions may modify Newtonian gravity at short, but macroscopic,
distances.

2.2 Yukawa Potentials

The form of the violations of Newton’s law of gravity arising from new physics
will be to some extent model dependent, but one finds in practice that most
theories yield modifications that have similar generic features [1]. For example,
suppose there exists a new vector field Aµ(x) which couples to fermions via the
Lagrangian density

L(x) = if ψ(x)γµψ(x)Aµ(x). (1)

Here f is the dimensionless vector-fermion coupling constant (� = c = 1) and
ψ(x) is the fermion field operator. If two fermions 1 and 2 exchange a single
vector boson with mass m via this coupling, the lowest order interaction in the
non-relativistic limit yields a Yukawa potential

Vv(r) = ±f1f2
4π

e−mr

r
, (2)

where “+” (“−”) indicates that the force is repulsive (attractive) between like
charges. If this was electromagnetism, massless photons give m = 0, and for
electrons f = −e. In the units we use, the range of the interaction is λ ≡ 1/m,
so that m ∼ 10−5 eV gives λ ∼ 1 cm, for example. If the exchanged bosons
were scalars instead of vectors, one arrives at an attractive Yukawa potential
between identical fermions:

Vs(r) = −f1f2
4π

e−mr

r
, (3)

where fi is now the scalar coupling constant.
If the fermions have masses m1 and m2, the total interaction potential in-

cluding gravity and scalar/vector interactions can be written in the general form

V (r) = −Gm1m2

r

(
1 + α12 e

−r/λ
)
, (4)

where
α12 ≡ ∓ f1f2

4πGm1m2
. (5)

The dimensionless constant α12 then characterizes the strength of the interaction
relative to gravity, and its sign depends on type of boson exchanged. When
r � λ, |α12| = 1 indicates a force of gravitational strength.
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Yukawa potentials also arise naturally in models where new gravitational
forces appear from extra spatial dimensions. String theory requires there to be
more than 3 spatial dimensions, but until recently it was thought that all the
extra dimensions were compactified on the Planck scale and thus invisible to
any conceivable experiment. However, much attention recently has focused on
a number of string-inspired models in which all Standard Model particles are
confined to the usual 3 spatial dimensions (a 3-brane) while gravity can “see” all
dimensions[17–21]. In such models, one would never expect to see the effects of
extra dimensions in Standard Model physics, but their effects would appear in
gravitational physics. Since so much of the parameter space of gravity remains
unexplored, these effects could have easily escaped detection. For example, in
models in which the extra dimensions are compact, it is possible that the com-
pactification radius rc could be as large as 10−3 m and thus would have not been
seen in any experiment to date [17,18]. These models would produce dramatic
deviations from Newtonian gravity at short distances since they imply that the
r-dependence of the gravitational potential between point masses changes when
the particle separation approaches rc:

Vgrav(r) =


−G4 m1m2

r
for r � rc

−G4+nm1m2

r1+n
for r � rc.

(6)

Here n is the number of extra spatial dimensions, G4 = G is the usual macro-
scopic Newtonian gravitational constant, and G4+n is the more fundamental
gravitational constant for the total 4 + n dimensional spacetime. Thus, in this
model, Newton’s law of gravity is merely a projection of a more fundamental law
of gravity onto 3 spatial dimensions, and the unusual weakness of gravity rela-
tive to the other fundamental forces is attributed to this projection. One of the
striking features of some recent string models is that compactification can occur
over scales much larger than the Planck scale (1/MPlanck ∼ 10−35 m)[17,18,21].
For example, if in a 4 + n dimensional spacetime the fundamental mass scale
Mfund ∼MEW, where MEW ∼ 1 TeV is the electroweak scale, then one expects
the compactification scale rc to be given by [17,18,21]

rc ∼ 1
Mfund

(
MPlanck

Mfund

)2/n

∼ (10−19 m)(1016)2/n, (7)

which yields,

rc ∼


1013 m, n = 1,
10−3 m, n = 2,
10−9 m, n = 3.

(8)

Since no deviations from Newtonian gravity have been observed for r � 10−3 m,
theories which suggest that rc � 10−3 m (e.g., n ≥ 2) are compatible with
current experimental limits. As one tests gravity over smaller distance scales,
the effects of new extra dimensions would first appear as corrections to the usual
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gravitational potential. It has been shown that these corrections for r � rc have
a Yukawa form [18,22,23]:

Vgrav(r) ∼ −G4 m1m2

r

(
1 + αne

−r/λ
)
. (9)

Here αn is a composition-independent universal constant that depends on n and
the nature of the compactification, and the range of the interaction is λ ∼ rc,
the compactification scale. For example, for n extra dimensions compactified on
an n-torus, αn = 2n [18,22,23]. It is thus conceivable that the first evidence
supporting the existence of extra spatial dimensions (and string theory) could
come from the detection of a composition-independent Yukawa modification of
Newton’s law of gravity.

2.3 Current Constraints on New Yukawa Forces

Let us now turn to the current laboratory constraints on new Yukawa forces
which arise from a generic potential of the form,

VY (r) = −α Gm1m2

r
e−r/λ. (10)

(Here we assume that the interactions are attractive for positive α.) This po-
tential will lead to a violation of the WEP in a gravity experiment if α is
composition-dependent, as in the case of a vector or scalar interaction. In addi-
tion, even if α is independent of the composition of the test masses, as in the
case of the extra dimension theories described earlier, small violations of the
WEP will still be present in an experiment using different materials due to the
“finite-size” effect [1]. This effect arises because a non-uniform Yukawa field will
“capture” different fractions of two finite-sized objects having the same mass,
but different densities, as will be the case in the null experiments considered
below. Finally, in addition to violating the WEP, VY (r) will also violate the ISL,
and so constraints on α can be inferred from tests of the gravitational ISL.

As shown in Fig. 1, the current experimental constraints on the Yukawa cou-
pling constant α as a function of range λ are quite stringent (allowed |α| � 1)
for 10−3 m � λ � 1015 m, but they fall exponentially outside this region.
Composition-dependent experiments have set strong limits for specific couplings
(e.g., to baryon number) when λ � 1015 m [1], but also fall off exponentially for
λ � 10−3 m.

As discussed in more detail in Ref. [9], current constraints allow α � 1 for
λ � 10−3 m. For 10−4 m � λ � 10−3 m, these limits were obtained from a test of
the gravitational ISL by Mitrofanov and Ponomareva [24], but they still permit
a new force with α ∼ 104 for λ ∼ 10−4 m. However, a new round of gravity
experiments [9,13,14] should fill in much of this region of parameter space within
the next few years. At shorter distances, Casimir/van der Waals forces dominate
gravity so the current limits are set by Casimir force experiments [9,25–27] and
are much less restrictive than those obtained from the longer ranged gravity ex-
periments. [See also Refs. [28,29] for detailed discussions on extracting limits on
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LAGEOS - 

Lunar /@' 
Precession 

Fig. 1. 2 a  c o n s t r a i n t s  o n  t h e  c o u p l i n g  c o n s t a n t  a a s  a  f u n c t i o n  of t h e  r a n g e  X f r o m  
c o m p o s i t i o n - i n d e p e n d e n t  e x p e r i m e n t s  [ I ] .  T h e  d a r k  s h a d e d  a r e a  i n d i c a t e s  t h e  region 
e x c l u d e d  a s  of 1 9 8 1 ,  a n d  t h e  l i g h t  h a t c h e d  region gives t h e  1996 l i m i t s  which r e m a i n  
c u r r e n t .  

new forces from Casimir force e x p e r i m e n t s . ]  T h e  region X 5 l o p 4  m  will r e m a i n  
essentially u n e x p l o r e d  u n t i l  t h e  n e x t  g e n e r a t i o n  of e x p e r i m e n t s  specifically d e d -  
i c a t e d  t o  s e a r c h  for new forces is designed a n d  c a r r i e d  o u t .  We t u r n  n e x t  t o  a  
discussion of some of t h e  difficulties likely t o  b e  e n c o u n t e r e d  i n  developing t h i s  
n e x t  r o u n d  of e x p e r i m e n t s .  

3 P r o b l e m s  i n  T e s t i n g  G r a v i t y  a t  V e r y  S h o r t  D i s t a n c e s  

3.1 G e n e r a l  P r o b l e m s  

As n o t e d  in t h e  I n t r o d u c t i o n ,  a  n u m b e r  of a u t h o r s  [8-121 have called a t t e n t i o n  t o  
t h e  huge g a p  i n  o u r  u n d e r s t a n d i n g  of g r a v i t y  a t  very s h o r t  d i s t a n c e s ,  a n d  t o  i t s  
p o t e n t i a l  t o  reveal new physics. T h e  fact t h a t  s h o r t - d i s t a n c e  g r a v i t y  e x p e r i m e n t s  
c a n  p o t e n t i a l l y  expose t h e  presence of e x t r a  s p a t i a l  dimensions is p a r t i c u l a r l y  
t a n t a l i z i n g .  However, since la1 - 1  in t h e s e  s t r i n g  models, t h e  u l t i m a t e  experi- 
m e n t a l  goal is q u i t e  challenging, n a m e l y  t o  s e t  l i m i t s  la1 5 1  for X 5 l o p 3  m .  
To accomplish t h i s ,  one h a s  t o  b e  able t o  sense a n d  d i s t i n g u i s h  a  force of grav- 
i t a t i o n a l  s t r e n g t h  a t  t h e s e  d i s t a n c e  scales. Since t h e  c u r r e n t  l a b o r a t o r y  l i m i t s  
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in this region are orders of magnitude less sensitive than this goal, we discuss
briefly some of the difficulties in studying gravity at short distances.

An obvious problem is scaling [9]. Suppose we have two identical spheres of
density ρ and radius R. If we wish to test the law of gravity between these spheres
at short distances, the dimensions of the spheres have to be made comparable to
the small distance scales that we are interested in probing. Since the minimum
separation distance between centers is 2R, this leads to a maximum force

Fmax =
G(4πρR3/3)2

(2R)2
∝ R4. (11)

This example illustrates that the gravitational force between macroscopic ob-
jects, which is already quite small, decreases rapidly with size and separation of
the test masses.

A second problem in searching for new short-ranged forces is that their short
range limits the effective mass of a body that can participate in the interaction.
Suppose we have a sphere of uniform density and radius R. Since gravity is a
long-range force, another identical sphere close by will interact with all of the
mass of the first sphere. However, if there exists a new force of range λ � R,
then only the layer of material of thickness ∼ λ on the surface of the sphere
will interact with external objects, and hence only a fraction ∼ λ/R of the total
mass participates in interactions. But this problem is actually much worse in
general. If we have two spheres nearly touching, it is only the mass within a
range λ of the contact point that interacts, which is much less than the fraction
λ/R, while the gravitational force is still felt by all the mass. Therefore, even
if the new force is intrinsically of gravitational strength (α = 1) between point
masses when r � λ, this new force between macroscopic bodies will usually be
much smaller than the corresponding gravitational force. This situation was not
encountered in previous longer range gravity experiments since in those cases,
λ � L, where L was the characteristic size of the test bodies used.

A third problem occurs when the separation distance is � 10−4 m, where
intermolecular forces become significant. Since these forces have a power-law
form 1/rn [30], where n depends on the geometry of the macroscopic bodies, they
grow very rapidly as r decreases and overwhelm gravity at very short distances.
Distinguishing a force of gravitational strength from this background will be a
major challenge.

3.2 Quantitative Example: Parallel Plate Gravity Experiment

Idealized Setup

To better appreciate how these problems might arise in actual experiments, let
us now consider a simple experimental setup. Our goal here is to estimate the
size of the various effects which might appear, and not to propose the optimal
experimental design, and hence we will ignore practical problems which might
be encountered when one actually attempts to realize such a design. Since we
are searching for forces of very short range, the discussion of the previous section
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DD

L

L

Fig. 2. The idealized parallel plate
setup used to quantitatively estimate
the relative magnitudes of the gravi-
tational, Casimir, and Yukawa forces.
Numerical results were obtained by let-
ting L = 1 cm, D = 1 mm, ρcopper =
8.96 × 103 m3, T = 300 K, and d  L.

suggests we should have most, if not all,
of the mass of the two test bodies in an
experiment contributing in order to real-
ize the largest possible force. This means
that we need to have all the mass in one
body as close as possible to all the mass
of the second body. The simplest way to
accomplish this is to use parallel plates as
our test bodies [29] which maximizes the
“effective mass” for any short-range range
force. It then follows that the most ap-
propriate configuration for searching for
new forces between macroscopic bodies is
a parallel-plate experiment analogous to
those used to study the Casimir effect [31].

Let us now consider two identical
plates of density ρ, thickness D, area A =
L2, separated by a distance d (Figure 2).
If we assume d � L, we can then safely
neglect edge effects and calculate the pres-
sures between the plates as if L = ∞.
In addition, we assume that the plates
are perfectly smooth, perfectly conduct-
ing, and at temperature T = 300 K.

Force Formulas

We begin our investigation of the forces between these plates with the known
forces, starting with gravity. For this particular configuration, the gravitational
force acting on the plates is given by

FGravity(d) = −2πGρ2L2D2, (12)

where the minus sign indicates an attractive force. We see that when the plates
are sufficiently close, the gravitational attraction is constant, independent of the
separation d.

If there are no stray charges, etc., gravity is the dominant force at large plate
separations, but as d decreases, the Casimir force grows rapidly and quickly over-
whelms gravity. Calculating the Casimir force for this geometry for real metals
can become quite complicated, involving corrections for finite conductivity and
surface roughness [32–34]. However, for present purposes we will ignore these dif-
ficulties by assuming the plates to be smooth and perfectly conducting over all
frequencies, which should be a good approximation as long as the plates are not
too close. However, we will include thermal effects which become large when the
plate separation is large. The Casimir force between our plates at temperature
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T can be written as [35,36]

FCasimir(d) = − π2

240
�cL2

d4
− πkTL2

d3

∞∑
n=1

n2 ln
[
1− exp

(
−nπ�c

kTd

)]
− π2(kT )4L2

45(�c)3
, (13)

where k is Boltzmann’s constant and factors of � and c have been included for
convenience. Eq. (13) simplifies in the two limiting cases [35,36]:

FCasimir(d) =


−1.202

(
kTL2

4πd3

)
, d� π�c

kT
,

−π2�cL2

240d4
, d� π�c

kT
.

(14)

Having obtained expressions for the known forces acting between the plates
in this idealized setup, let us now determine the forces arising from possible new
interactions. The attractive Yukawa potential between point masses as given by
Eq. (10) leads to a force between the plates (with d� L) given by

FYukawa(d) = −2παλ2Gρ2L2
(
1− e−D/λ

)2
e−d/λ. (15)

We then notice that the ratio of this Yukawa force to the gravitational force in
Eq. (12) is

FYukawa(d)
FGravity(d)

= α

(
λ

D

)2 (
1− e−D/λ

)2
e−d/λ. (16)

If λ� D, then
FYukawa(d)
FGravity(d)

- α

(
λ

D

)2

e−d/λ. (17)

Thus, even if the Yukawa coupling is intrinsically of gravitational strength (α =
1), the actual Yukawa force is suppressed relative to gravity not only by the
usual exponential factor e−d/λ, but also by (λ/D)2 which arises because only a
fraction λ/D of the total mass of each plate contributes to the Yukawa force.
This effect was discussed earlier and clearly illustrates how a short-ranged force
intrinsically of gravitational strength is strongly suppressed in an experiment
using macroscopic bodies.

Numerical Results

Having found the general formulas for all the forces that we will be considering,
let us now obtain numerical values for the following setup. We assume that the
plates have dimensions L × L × D, where L = 1 cm and D = 1 mm, which
are roughly comparable to the values used in some of the current short distance
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Table 1. The magnitudes of the gravitational, Casimir, and Yukawa (using α = 1 and
λ = 10−5 m) forces arising in the idealized parallel plate experiment discussed in the
text. Here FBack = FGravity + FCasimir is the total background force against which the
signal of FYukawa must be seen.

d (m) Fgravity (N) FCasimir (N) FYukawa (N) FYukawa/FBack

10−3 3.4 × 10−12 4.2 × 10−17 1.3 × 10−59 4 × 10−48

10−4 3.4 × 10−12 4.0 × 10−14 1.5 × 10−20 4 × 10−9

10−5 3.4 × 10−12 4.0 × 10−11 1.2 × 10−16 3 × 10−6

10−6 3.4 × 10−12 1.3 × 10−7 3.0 × 10−16 2 × 10−9

10−7 3.4 × 10−12 1.3 × 10−3 3.3 × 10−16 3 × 10−13

10−8 3.4 × 10−12 1.3 × 101 3.4 × 10−16 3 × 10−17

gravity experiments [9,13]. Since our previous calculations assumed d � L, we
focus our attention on the region 10−8 m � d � 10−3 m. Next we will assume
that the plates are made of pure copper which has a density ρ = 8.96×103 kg/m3.
Except for the new force parameters α and λ, our problem is now completely
specified.

Using these numbers, we first calculate the known forces, gravity and Casimir,
for the plates. As discussed earlier, the gravitational force under the conditions
assumed here is constant and given by Eq. (12). Substituting the parameters
given above yields

FGravity = 3.37× 10−12 Newton. (18)

To determine the Casimir force for this configuration, we use Eq. (13). The
cross-over distance dc, where temperature-dependent effects become important
at T = 300 K, is

dc =
π�c

kT
= 2.4× 10−5 m = 24 µm. (19)

Graphs of the Casimir force using Eq.(14), and the gravitational force between
the plates, are shown together in Figure 3, and numerical values of these forces
at various distances can be found in Table 1. The gravitational and Casimir
forces are equal to each other when T = 300 K at d = 2.3 × 10−5 m = 23 µm,
which just happens to coincide with dc here. Thus, for d � 23 µm, the Casimir
force will dominate gravity in this setup.

Now let us turn to new Yukawa forces, which are characterized by two free
parameters, the relative strength α and the range λ. If for illustrative purposes
we consider a force of gravitational strength (α = 1) and set λ = 10−5 m, then
Eq. (15) yields FYukawa(d) exhibited in Figure 3 and Table 1. We see that when
d� λ, the force becomes constant:

FYukawa(d� λ) = 3.37× 10−16 Newton, (20)

which is (λ/D)2 = 10−4 times smaller than the corresponding gravitational force
given by Eq. (18). Thus, as explained earlier, even though the Yukawa force
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Fig. 3. The Casimir, gravitational, and Yukawa (α = 1, λ = 10−5 m) forces between
the parallel plates shown in Fig.2.

between point particles is of gravitational strength at short distances, FYukawa is
much smaller than gravity for these macroscopic plates. We also clearly see that
FYukawa/FBack is maximized when d ∼ λ and falls off rapidly from this plate
separation (Fig. 4). This is because FYukawa levels off when d � λ while FCasimir
continues to increase via a power-law (1/d4 if d � dc).

Constraining New Short–Ranged Yukawa Forces

This analysis using an obviously idealized setup reveals the two critical prob-
lems that will be encountered in devising experiments using macroscopic bodies
to search for very short–ranged Yukawa interactions of gravitational strength
(α ∼ 1). The first is that the absolute magnitude of such a force will be very
small, possibly even smaller than the gravitational force if α is small. Thus,
an experiment must be sensitive to the smallest possible forces. Second, since
the Casimir background force grows rapidly as the separation decreases, one
must be able to extract the signal of a very weak force from a background of
very strong intermolecular forces. A direct attack on this problem would be
to attempt to calculate as accurately as possible the background forces in a
gravity experiment, and to then subtract these from the observed force to set
limits using what remains [9,26,28,29]. However, recent experiments studying
the Casimir force reveal the difficulty of accurately calculating the background
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Fig. 4. The ratio of the Yukawa (α = 1, λ = 10−5 m) force to the background force
FBack = FGravity + FCasimir for the parallel plate setup shown in Fig. 2.

forces to better than 1% [25,27,32–34,37,38]. While this approach is still possible,
we will describe in the next section a new method of performing a null short-
distance gravity experiment specifically designed to directly subtract out the
unwanted background effects. Calculating intermolecular forces precisely then
becomes much less important.

4 Very Short Distance Null Gravity Experiments

Some of the best constraints on Yukawa interactions come from tests of the WEP
[1]. In these experiments, one compares the accelerations of compositionally-
different test bodies toward a common source body. Any differences in these
accelerations can then be attributed to non-gravitational forces. We wish to
utilize the same principle in a short-distance gravity experiment, and thus avail
ourselves to the extreme sensitivity of such experiments.

4.1 Null Experiment #1

Inspired by two ongoing short distance experiments [9,13], a possible design for
one such experiment is shown in Figure 5. It consists of two parallel plates,
a source plate 1 and a detector plate made of two smaller plates 2 and 2′.
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Fig. 5. Schematic design for Very Short Distance Null Experiment #1. See text for
details.

The source plate is driven sinusoidally with angular frequency ω such that the
separation distance d is given by

d(t) = d0 + d1 cosωt. (21)

Instead of detecting a force, this experiment would be sensitive to a torque,
modulated by the frequency ω, about an axis passing along the boundary where
plates 2 and 2′ are joined, as shown in Fig. 5. If we assume that the plates are
conducting, the net torque τnet on the detector plate will arise from contributions
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from the gravitational, Casimir, and possibly, Yukawa forces:

τnet = τGravity + τCasimir + τYukawa

=
L

2

[
(FGravity

2 − FGravity
2′ ) + (FCasimir

2 − FCasimir
2′ )

+(FYukawa
2 − FYukawa

2′ )
]
, (22)

where FGravity
i , FCasimir

i , and FYukawa
i are the gravitational, Casimir, and Yukawa

forces on plates i = 2 and 2′ respectively. One then selects plates 2 and 2′

such that the torque τGravity + τCasimir due to background forces vanishes while
τYukawa �= 0 if α1i �= 0. [Here we allow for the possibility that α12 and α12′ , the
Yukawa couplings between the materials comprising plates 1 and 2, and 1 and
2′ respectively, are different.]

At very small separations, FGravity
i will be negligible (and independent of ω

to first approximation) , but it is still easy to make τGravity vanish anyway. Using
Eq. (12), we see that

|FGravity
2 − FGravity

2′ | = 2πGL2ρ1D1 |ρ2D2 − ρ2′D2′ | , (23)

where ρi and Di are the density and plate thickness of the ith plate. Then

(ρ2D2 = ρ2′D2′)⇒ (M2 = M2′)⇒ τGravity = 0, (24)

so if the detector plates 2 and 2′ have the same mass, the gravitational torque
will vanish.

Of course, the much bigger challenge is choose materials for plates 2 and 2′

such that the Casimir torque τCasimir also vanishes. If the plates were perfectly
conducting, this would be the case since Eq. (13) would be identical for all
such plates with the same surface area. However, the finite conductivity of real
metallic plates becomes very important when the plate separation d ∼ λP , where
λP = 2πc/ωP , and ωP is the plasma frequency of the metal. Still, it was shown
recently [32] that the Casimir force between pairs of copper and gold plates
are equal to a good approximation for separations d � 10−6 m at T = 0. Such
calculations are difficult for real materials, but this certainly raises the hope that
it is possible to choose appropriate plates 2 and 2′ such that

FCasimir
2 − FCasimir

2′ - 0 ⇒ τCasimir - 0. (25)

At the very least, one should be able to fabricate the plates using two differ-
ent isotopes of the same element (e.g., 24Mg and 26Mg) such that Eq. (25) is
satisfied. The underlying premise of the “iso-electronic” effect (IE) is that to a
good approximation the Casimir effect depends on the electronic properties of
the materials, and hence is largely independent of their nuclear properties. By
contrast, the gravitational interaction, and virtually all proposed new Yukawa
interactions, involve couplings to both electrons and nucleons. Hence, subtract-
ing out the electronic contributions by choosing two isotopes of some material, or
by choosing materials with similar electronic properties (such as Cu and Au), we
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can enhance the signal from a new Yukawa force while simultaneously reducing
the Casimir background.

The remaining torque after the gravitational and Casimir torques have been
suppressed might be due to a new Yukawa force. Using Eq. (15), the net torque
due to a putative Yukawa force would be

τYukawa = 2πGλ2(L/2)L2ρ1

(
1− e−D1/λ

)
e−d/λ

×
[
α12ρ2

(
1− e−D2/λ

)
− α12′ρ2′

(
1− e−D2′/λ

)]
. (26)

If λ� Di, then Eq. (26) simplifies to

τYukawa - 2πGλ2(L/2)L2ρ1e
−d/λ [α12ρ2 − α12′ρ2′ ] . (27)

If the Yukawa force arises from an extra-dimensional modification of Newtonian
gravity such that α12 = α12′ = αn, Eq. (27) reduces to

τYukawa - 2παnGλ2(L/2)L2ρ1ρ2e
−d/λ

(
1− ρ2′

ρ2

)
. (28)

This result depends on the difference in the mass densities ρ2 − ρ2′ for a simple
reason: When λ � Di, the force only sees the mass within a distance λ of the
surface. Thus, if plates 2 and 2′ have different densities, the effective mass seen
by the Yukawa force will be different and a net torque arises due to the “finite-
size” effect discussed earlier. It is then clear that one should choose materials 2
and 2′ such that ρ2 and ρ2′ differ as much as possible while still ensuring that
the Casimir torque vanishes. For the gold/copper and 24Mg/26Mg combinations
suggested above,

1− ρ2′

ρ2
-


0.32 2 = Au, 2′ = Cu,

0.077 2 = 26Mg, 2′ = 24Mg.
(29)

The hope is that the suppression factor Eq. (29) is more than compensated by
the reduction of the unwanted background torques.

4.2 Null Experiment #2

We conclude this section by briefly describing another possible design for a short
distance null experiment motivated by another set of gravity experiments [14,39].
As shown schematically in Figure 6, this experiment consists of two disks, one
serving as the source mass, while the other (detector mass) is the pendant of
a torsion pendulum. Each disk is divided into alternating wedges made of two
different materials 1 and 2. The wedges and materials 1 and 2 are designed
such that no Casimir torque would arise when the source disk rotates below the
pendulum. For example, as indicated above, 1 and 2 might be gold/copper or
24Mg/26Mg which would significantly reduce the Casimir torque. Then, if the
separation between the disks is small, the remaining torque on the pendulum
would arise from a putative Yukawa force because the effective mass within a
distance of λ will be different for alternating wedges.
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Fig. 6. Schematic design for Very Short Distance Null Experiment #2. See text for
details.

5 Discussion

It is clear that there is significant motivation for testing Newtonian gravity
at very short distances. However, as we have seen, new problems will face ex-
perimentalists who wish to extend current constraints on the Yukawa coupling
constant α down to ranges λ � 10−4 m. Our aim in this paper has been to point
out some of the most obvious difficulties, but there may be others that have
passed unnoticed. While we have not addressed the significant issue of improv-
ing the sensitivity of experiments to very small forces, we have taken the first
steps towards dealing with the problem of detecting small forces against a large
intermolecular force background. Our schematic designs for null experiments are
meant as illustrations of the principles involved in canceling background forces
(the “iso-electronic” and “finite-size” effects), and hence are not intended to
suggest optimal designs. It is hoped that experimentalists, who face the realities
of imperfect materials and incomplete theories, can extract some useful ideas
from these schematic designs or, perhaps, will be able to point to flaws which
preclude them from working as actual experiments. Finally, we conclude with
the encouraging note that since so little is known about gravity at separations
� 10−4 m, virtually any good experiment in this region will tell us something
new.



308 D.E. Krause and E. Fischbach

Acknowledgments

We wish to thank P. Boynton, G. Carugno, C. Deufel, D. Koltick, A. Lam-
brecht, J. Mullen, R. Newman, R. Reifenberger, S. Reynaud, and C. Talmadge
for very useful discussions. D. Krause also acknowledges the support of Wabash
College and Purdue University, and this work was supported in part by the U.S.
Department of Energy under Contract No. DE-AC 02-76ER01428.

References

1. E. Fischbach and C. Talmadge: The Search for Non-Newtonian Gravity (AIP
Press/Springer-Verlag, New York, 1999).

2. I. Ciufolini and J. A. Wheeler: Gravitation and Inertia (Princeton University Press,
Princeton, 1995).

3. C. M. Will: Theory and Experiment in Gravitational Physics, revised edition (Cam-
bridge University Press, New York, 1993).

4. Y. T. Chen and A. Cook: Gravitational Experiments in the Laboratory (Cambridge
University Press, New York, 1993).

5. E. Fischbach, G.T. Gillies, D.E. Krause, J.G. Schwan, and C. Talmadge: Metrologia
29, 213 (1992).

6. E.G. Adelberger, B.R. Heckel, C.W. Stubbs, and W.F. Rogers: Annu. Rev. Nucl.
Part. Sci. 41, 269 (1991).

7. Y. Fujii: Int. J. Mod. Phys. A 6, 3505 (1991).
8. J.C. Price: in International Symposium on Experimental Gravitational Physics,

edited by P. Michelson, H. Enke, and G. Pizzella (World Scientific, Singapore,
1988), pp. 436–439.

9. J.C. Long, H.W. Chan, and J.C. Price: Nucl. Phys. B 539, 23 (1999).
10. R. Onofrio: Mod. Phys. Lett. A 13, 1401 (1998).
11. S.R. Beane: Gen. Rel. Grav. 29, 945 (1997).
12. S. Dimopoulos and G. F. Giudice: Phys. Lett. B 379, 105 (1996).
13. G. Carugno, Z. Fontana, R. Onofrio, and C. Rizzo: Phys. Rev. D 55, 6591 (1997).
14. E.G. Adelberger, et al.: (C. Deufel, personal communication.)
15. J. Polchinski: String Theory, Volumes 1 and 2 (Cambridge University Press, New

York, 1999).
16. M. Kaku: Introduction to Superstrings and M-Theory (Springer-Verlag, New York,

1999).
17. I. Antoniadis, S. Dimopoulos, and G. Dvali: Nucl. Phys. B 516, 70 (1998); N.

Arkani-Hamed, S. Dimopoulus, and G. Dvali: Phys. Lett. B 429, 263 (1998); I.
Antoniadis, N. Arkani–Hamed, S. Dimopoulos, and G. Dvali: Phys. Lett. B 436,
257 (1998).

18. N. Arkani–Hamed, S. Dimopoulos, and G. Dvali: Phys. Rev. D 59, 086004 (1999).
19. L. Randall and R. Sundrum: Phys. Rev. Lett. 83, 4690 (1999).
20. G. Shiu and S.H.H. Tye: Phys. Rev. D 58, 106007 (1998).
21. S. Nussinov and R. Shrock: Phys. Rev. D 59, 105002 (1999).
22. A. Kehagias and K. Sfetsos: hep-ph/9905417.
23. E.G. Floratos and G.K. Leontaris: Phys. Lett. B 465, 95 (1999).
24. V.P. Mitrofanov and O. I. Ponomareva: Sov. Phys. JETP 67, 1963 (1988).
25. S.K. Lamoreaux: Phys. Rev. Lett. 78, 5 (1997); 81, 5475(E) (1998).



Searching for Extra Dimensions 309

26. M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko: Phys. Rev.
D 60, 055004 (1999).

27. U. Mohideen and A. Roy: Phys. Rev. Lett. 81, 4549 (1998); A. Roy, C. -Y. Lin,
and U. Mohideen: Phys. Rev. D 60, 111101 (1999).

28. M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko: in The
Casimir Effect 50 Years Later, edited by M. Bordag (World Scientific, Singapore,
1999), pp. 39–49; M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepa-
nenko: Phys. Rev. D 58, 075003 (1999); V. M. Mostepanenko and I. Yu. Sokolov:
Phys. Rev. D 47, 2882 (1993).

29. V. M. Mostepanenko and I. Yu. Sokolov: in Quantum Gravity, edited by. M.
A. Markov, V. A. Berezin, and V. P. Frolov (World Scientific, Singapore, 1990),
pp. 213—232; V. M. Mostepanenko and I.Yu. Sokolov: in Modern Problems of
Theoretical Physics, edited by P.I. Pronin and Yu.N. Obukhov (World Scientific,
Singapore 1991), pp. 175–196.

30. J. Israelachvili: Intermolecular & Surface Forces, 2nd edition (Academic Press,
New York 1992).

31. H.B.G. Casimir: Proc. Kon. Ned. Akad. Wet. 51, 793 (1948).
32. A. Lambrecht and S. Reynaud: Eur. Phys. J. D 8, 309 (2000).
33. G.L. Klimchitskaya, A. Roy, U. Mohideen, and V. M. Mostepanenko: Phys. Rev.
A 60, 3487 (1999).

34. S.K. Lamoreaux: Phys. Rev. A 59, R3149 (1999).
35. J. Mehra: Physica 37, 145 (1967).
36. L.S. Brown and G.J. Maclay: Phys. Rev. 184, 1272 (1969).
37. S.K. Lamoreuax: quant-ph/9907076.
38. S.K. Lamoreuax: Phys. Rev. Lett. 83, 3340; U. Mohideen and A. Roy: Phys. Rev.

Lett. 83, 3341 (1999).
39. M. W. Moore, A. Boudreaux, M. DePue, J. Guthrie, R. Legere, A. Yan, and P. E.

Boynton: Class. Quantum Grav. 11, A97 (1994).



Relativistic Effects in the Motion of the Moon

Bahram Mashhoon1 and Dietmar S. Theiss2

1 Department of Physics and Astronomy, University of Missouri-Columbia,
Columbia, Missouri 65211, USA

2 Institute for Theoretical Physics, University of Cologne, 50923 Köln, Germany

Abstract. The main general relativistic effects in the motion of the Moon are briefly
reviewed. The possibility of detection of the solar gravitomagnetic contributions to the
mean motions of the lunar node and perigee is discussed.

1 Introduction

In a recent paper, Gutzwiller has provided an admirable review of the oldest
three-body problem, namely, the Sun-Earth-Moon system [1]. Some work on
the relativistic theory is mentioned in his paper; however, in view of the recent
advances in relativistic celestial mechanics this subject deserves a more complete
discussion. Here we provide a brief description of the main relativistic effects.

The lunar laser ranging experiment has opened up the possibility of measur-
ing relativistic effects in the motion of the Moon; indeed, the agreement between
the standard general relativistic model that contains over a hundred model pa-
rameters and the ranging data accumulated over the past three decades is ex-
cellent [2,3]. For instance, the post-fit residuals in the Earth-Moon distance are
at the centimeter level [2,3]. Simple theoretical estimates lead to the conclusion
that the main relativistic effects in the lunar theory are due to the spin-orbit
coupling of the Earth-Moon system in the gravitational field of the Sun. The
post-Newtonian influence of the solar field on the lunar motion consists of terms
that can be classified as either harmonic (i.e. periodic) or secular (i.e. cumula-
tive) in time. It turns out to be very difficult in practice to separate the harmonic
terms from the corresponding Newtonian terms with the same periodicities. In
effect, the existence of the post-Newtonian harmonic terms leads to small rel-
ativistic corrections in the numerical values of certain model parameters that
are thereby adjusted by a fit to the ranging data. To give an example of such
harmonic effects, we mention our prediction of a 6 cm relativistic tidal variation
in the Earth-Moon distance with a period of 1/2 synodic month [4].

The main secular terms turn out to be essentially due to the precessional
motion of the Earth-Moon orbital angular momentum in the field of the Sun.
The Earth-Moon system can be thought of as an extended gyroscope in orbit
about the Sun; we are interested in the description of the motion of the spin
axis of this gyroscope with respect to the “fixed” stars (i.e. the sidereal frame).
An ideal pointlike test gyroscope carried along a geodesic orbit would exhibit,
in the post- Newtonian approximation, geodetic precession due to the orbital
motion around the mass of the source as well as gravitomagnetic precession due
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to the intrinsic rotation of the source; however, the finite size of the gyroscope
in this case (i.e. the orbit of the Moon about the Earth) leads to additional tidal
effects. The main post-Newtonian gravitoelectric effect, i.e. geodetic precession,
results in the advance of the Moon’s node and perigee by about 2 arcseconds
per century as first predicted by de Sitter already in 1916 [5]. This motion has
been measured by Shapiro et al. with an accuracy of about one percent [6]. It
is a relativistic three-body effect; therefore, we consider in the next section the
restricted three-body problem in general relativity and briefly indicate, in par-
ticular, the more subtle post-Newtonian gravitomagnetic contributions to the
motions of the Moon’s node and perigee that are caused by the rotation of the
Sun; indeed, solar rotation induces cumulative relativistic tidal effects in the
Earth-Moon system [4].

2 Restricted Three-Body Problem in General Relativity

In our previous work [4], we developed a new scheme for the approximate treat-
ment of the restricted three-body problem in general relativity. This coordinate-
invariant approach is particularly useful for a reliable theoretical description of
relativistic (solar) tidal effects in the motion of the Earth-Moon system. We as-
sume that the Moon follows a geodesic in the gravitational field generated by the
Earth and the Sun. This field may be calculated as follows: we first imagine that
the Earth follows a geodesic in the solar field. Along this geodesic, we set up a
geocentric Fermi coordinate system. This system, which involves the tidal field
of the Sun, is then enhanced by taking due account of the field of the Earth in
the linear approximation. Tidal effects in general relativity involve the projection
of the Riemann tensor onto the tetrad frame of the measuring device. Consider
the tidal matrix for a test system (“Earth”) in free fall in the gravitational field
of a rotating mass (“Sun”). In the standard first-order post-Newtonian treat-
ment, the spatial axes of the local tetrad frame along the orbit are obtained
by boosting the background Minkowski axes and adjusting scales to maintain
orthonormality; the resulting tidal matrix for an approximately circular geodesic
orbit turns out to be sinusoidal in time [7]. In this case, the tetrad frame is not
parallel-transported, but its motion involves the Lense-Thirring orbital preces-
sion as well as the geodetic (i.e. de Sitter-Fokker) precession of the spatial axes.
Once the parallel transport of the spatial axes along the orbit is imposed, the
gravitomagnetic (i.e. Schiff) precession of the spatial axes would also appear in
the first post-Newtonian order. In this order, the tidal matrix for the parallel-
transported axes contains a secular term as well that must therefore be a direct
consequence of the Schiff precession of the spatial axes [8], in agreement with
our previous work [9-11]. The linear growth of this gravitomagnetic contribution
to the tidal field poses a problem for the first post-Newtonian approximation:
the non-Newtonian “off-diagonal” part of the tidal matrix can diverge in time
[9-11]. To avoid this limitation, we have developed a post-Schwarzschild treat-
ment of gravitomagnetic tidal effects; indeed, the concept of relativistic nutation
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provides a natural resolution of this difficulty by limiting the temporal extent of
validity of the post-Newtonian approximation [9-11].

Imagine, for instance, a set of three orthogonal test gyroscopes falling freely
along an inclined circular geodesic orbit with constant radius r (“astronomical
unit”) about a slowly rotating central body (“Sun”) with mass M and proper
angular momentum J . The motion of the spin axes of these torque-free gyro-
scopes, which constitute a local inertial frame (i.e. the geocentric Fermi frame),
is essentially governed by the equations of parallel transport along the geodesic
orbit. By solving these equations using the post-Schwarzschild approximation
scheme that takes M into account to all orders, it can be shown that the av-
erage motion of the gyroscope axes with respect to an effective Newtonian (i.e.
sidereal) frame consists of a gravitoelectric precessional motion—i.e. geodetic
precession that was first completely analyzed by Fokker— together with a com-
plex gravitomagnetic motion that can be loosely described as a combination of
precessional movement and a harmonic nodding movement. The latter motion is
a new relativistic effect of a rotating mass and has been referred to as relativistic
nutation [11]. In the post-Newtonian approximation, the nutational terms over
a limited time combine with the other gravitomagnetic precessional terms to
give the Schiff precession. To see how this comes about, let us denote by τ the
proper time of the geodesic orbit and consider a vector normal to the orbital
plane (ecliptic) at the beginning of measurement (τ = 0). Relativisticnutation
is a periodic variation of the angle between this vector and a gyroscope axis
that is Fermi propagated along the orbit. The leading contribution of relativistic
nutation to this angle can be written as

Θn ≈ ξ [sin(η0 + ωF τ)− sin η0] sinα, (1)

where η0 is the azimuthal position of the Earth in the ecliptic at τ = 0 measured
from the line of the ascending nodes and ξ = J/Mr2ω. Here ω, ω2 = GM/r3,
approximately describes the orbital frequency in the absence of rotation and
α denotes the inclination of the orbit with respect to the equatorial plane of
the Sun [12]. The frequency of this nutational oscillation is the Fokker frequency
ωF ≈ 3

2εω, where ε = GM/c2r. The nutation amplitude, ξ sinα, does not depend
on the speed of light c. This remarkable fact can be traced back to the occurrence
of a small divisor [9-11] involving the Fokker frequency. In the post-Newtonian
limit of the post-Schwarzschild approximation, Eq. (1) reduces to Θn ∼ ωnτ ,
which represents a precessional motion with frequency ωn = ξωF sinα cos η0
about a direction opposite to that of orbital velocity at τ = 0. Thus, relativistic
nutation reduces to a part of the Schiff precession in the first post-Newtonian ap-
proximation. It follows from this analysis that the first post-Newtonian approx-
imation breaks down over timescales of the order of Fokker period τF = 2π/ωF ;
however, this fact does not diminish the usefulness of the first post-Newtonian
approximation for the description of observations in the solar system since in
this case the Fokker period is almost immeasurably long (e.g. τF - 67 million
years for the motion of the Earth about the Sun).

Let us consider the influence of the gravitomagnetic field of the central body
(“Sun”) on the relative acceleration of two nearby test particles (“Earth” and
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“Moon”) moving along the circular geodesic orbit. The dominant contributions of
the gravitomagnetic field of the central body to the tidal matrix, first calculated
by the authors [9-11], are proportional to

ω2ξ sinα sin
(
1
2
ωF τ

)
, (2)

which is directly proportional to the amplitude of relativistic nutation (ξ sinα)
and exhibits a maximum (at τ = τF /2) that is independent of the speed of light
c. It follows from Eq. (2) that to first order in ωF τ � 1, the dominant grav-
itomagnetic amplitude varies linearly with τ . This secular amplitude originates
from a coupling of the nutation part of Schiff precession with the amplitude
(∼ ω2) of the Newtonian contribution to the gravity gradient [13]. It should be
mentioned in passing that the relativistic quadrupole contributions to the tidal
matrix have properties quite similar to the gravitomagnetic tidal effect described
here [10].

Let us now turn to the potentially observable effects of the solar gravitomag-
netic field on the lunar motion. The lunar path is determined by the Newton-
Jacobi equation

d2xi

dτ2
+

Gm

R3 xi = −Kij(τ)xj , (3)

where xi, i = 1, 2, 3, represent the geocentric Fermi coordinates of the Moon, m
is the total mass of the Earth-Moon system and R(τ) denotes the Earth-Moon
distance depending on the proper time τ measured along the geocentric path
around the Sun. Here K is the tidal matrix. Equation (3) describes the motion
of the Moon with respect to a geocentric local inertial frame [14]. Using the
equation of relative motion (3), we have calculated—among other things—the
influence of the tidal field of the Sun on the orbital angular momentum of the
Moon with respect to the Earth. To express the result with respect to the sidereal
frame, we choose as our sidereal reference framethe geocentric Fermi frame at
τ = 0. This frame is related to the Fermi frame at time τ by a rotation matrix
that incorporates the relativistic precession and nutation of the Fermi frame
with respect to the sidereal frame. In the first post-Newtonian approximation,
this motion reduces to a (Fokker plus Schiff) precession. Let D denote this
rotation matrix, then Li = DijLj , where the sidereal components (Li) of the
orbital angular momentum are obtained from a transformation of the geocentric
components (Lj) with

Dij = δij − εijkΦk , Φ =
∫ τ

0
ωFS(τ ′)dτ ′. (4)

Here the analysis is limited to the first post-Newtonian approximation and ωFS
represents the frequency of (Fokker plus Schiff) precession. The direction of Schiff
precession is not fixed along the Earth’s orbit; therefore, Φ contains (cumulative)
secular terms (which represent simple precession) together with (harmonic) nu-
tational terms of frequency 2ω and amplitude of order αεξ. Averaging over the
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latter terms, the dominant secular terms in Φ are given by

Φ1 ∼ 1
2
αεξωτ sin η0 , Φ2 ∼

(
−3
2
+ ξ

)
εωτ , Φ3 ∼ 1

2
αεξωτ cos η0 (5)

with respect to the geocentric Fermi frame at τ = 0, which has its first axis
essentially along the radial position of the Earth, the third axis approximately
along the direction of motion of the Earth and the second axis normal to the
ecliptic (in a direction opposite to the Earth’s orbital angular momentum about
the Sun). We note that for ξ = 0, Eq. (5) expresses the de Sitter-Fokker effect
that has been observed by Shapiro et al. [6]. To illustrate our approach, let us
use Eq. (3) to determine the value of L, which is the angular momentum of
the Moon in a circular orbit about the Earth with respect to the Fermi frame,
averaged over orbital motions of the Earth about the Sun (with frequency ω)
and the Moon about the Earth (with frequency Ω). Then

d〈L〉
dτ

= ω̃ × L0 , (6)

where L0 is the unperturbed orbital angular momentum with respect to the
geocentric Fermi frame and ω̃ is given by

ω̃1 ≈ −ω̃0αεξ

(
2 sin η0 +

3
2
ωτ cos η0

)
, (7)

ω̃2 ≈ ω̃0(1− 6εξ), (8)

ω̃3 ≈ −ω̃0αεξ

(
2 cos η0 − 3

2
ωτ sin η0

)
(9)

to first order in the tidal perturbation characterized by the Newtonian regres-
sion frequency ω̃0 = 3ω2/4Ω, which corresponds to a period of nearly 18 years
[15,16]. It is clear from Eqs. (4)-(9) that the motion of 〈L〉 can be expressed
as a Newtonian regression modulated by long-term (secular) relativistic pertur-
bations characterized by the de Sitter-Fokker, Schiff and gravitomagnetic tidal
effects. To illustrate this point, let us assume for the sake of simplicity that in
the absence of relativistic effects the lunar orbital angular momentum undergoes
a steady regression of frequency ω̃0 and that once relativistic effects are included
the average motion in the Fermi frame is one of precession with the frequency
given by Eqs. (7)-(9). It then follows that the expression for 〈L2〉, i.e. the aver-
age of the second sidereal component of the lunar orbital angular momentum,
contains a dominant gravitomagnetic contribution of the form

〈L2〉secular ≈ 2αβεξ(µR2
0Ω)ωτ sin(η0 + ζ0 − ω̃0τ), (10)

where β, µ,R0 and ζ0 denote, respectively, the inclination of the lunar orbit with
respect to the ecliptic (≈ 5◦), the mass of the Moon, the mean Earth-Moon sepa-
ration and the longitude of the ascending node of the orbit of the Moon measured
from the first axis of the sidereal frame. These simple considerations that are
based on an initial circular orbit only indicate the nature of the secular terms
involved; clearly, extensive calculations are necessary for a complete treatment.
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3 Discussion

The results of our theoretical work are of particular interest for the description
of dominant relativistic gravitational effects in the motion of the Moon, espe-
cially the gravitomagnetic tidal component of the motion of the orbital angular
momentum of the Moon. It is important to point out that the eccentricities of
the orbit of the Earth around the Sun and the orbit of the Moon about the Earth
should be taken into account; we have ignored them in our preliminary analysis
[16]. As lunar laser ranging data further accumulate, it may become possible in
the future to deduce the angular momentum of the Sun from the measurement of
the solar gravitomagnetic contributions to the mean motions of the lunar node
and perigee.

It is interesting to compare our secular gravitomagnetic tidal terms with hy-
pothetical terms that might indicate a temporal variation of the gravitational
“constant” G. Our results have thus far been based on a secular term propor-
tional to τ in the tidal matrix K in Eq. (3); however, as can be seen from the
middle term in Eq. (3), similar effects could be produced if such a term appears
in G instead. We have shown that our predictions are similar to a variation of G
in Eq. (3) at the level of 10−16 yr−1; moreover, there are significant differences
between the two effects that can be used to separate them [4,9]. The present up-
per limit on |Ġ/G| is at the level of 10−12 yr−1; therefore, it may be a long while
before the gravitomagnetic effects in the motion of the Moon become detectable.
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Abstract. 30 years of lunar laser ranging (LLR) data has been modeled and fit with
several millimeters precision using the general relativistic equations of motion for solar
system dynamics. This produces several key tests of that tensor theory of gravity and
strongly constrains presence of any supplementary interactions. Earth and Moon fall
toward the Sun at rates equal to a couple parts in 1013, confirming both the universal
coupling of gravity to matter’s stress–energy tensor, and gravity’s specific non–linear
coupling to itself. The expected deSitter precession (with respect to the distant ‘fixed’
stars) of the local inertial frame moving with the Earth–Moon system is confirmed to
3.5 parts in 103 precision, and Newton’s constant indeed shows no cosmological time
variation at the few parts in 1012 per year level. All the types of post–Newtonian terms
in theN–body equation of motion—motional, gravito–magnetic, non–linear, inductive,
etc. — contribute to the measured details of the lunar orbit, so LLR achieves ’near–
completeness’ as a gravity experiment and probe. The precision of these measurements,
especially those connected with lunar orbit frequencies and their rates of change, should
further improve as LLR observations continue into the future.

1 Introduction

In the late 1960s I was seeking new ways to test general relativity theory using
the new possibilities of space–based experimentts. This led me to calculate the
gravitational to inertial mass ratio for celestial bodies which contained appre-
ciable internal gravitational binding energy. Most alternative theories of metric
gravity yielded an ‘anomalous’ result — that this ratio for a body depends on
its fractional gravitational binding energy [1]

M(G)
M(I)

= 1− η
G

2Mc2

∫
ρ(x)ρ(y)
|x− y| d

3x d3y (1)

resulting in a body–dependent acceleration rate in external gravitational fields

ai =
(
M(G)
M(I)

)
i

gex . (2)

Here η is a theory–dependent dimensionless coefficient sensitive to just about
every post–Newtonian feature of theory and which vanishes in general relativity.

Shortly after this theoretical work I learned of the forthcoming lunar laser
ranging (LLR) capability which would result from the Apollo landings on the
Moon. LLR would be sufficiently sensitive to measure the difference between
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the acceleration rates of Earth and Moon toward the Sun to a scientifically
interesting precision; there was a fortunate near–resonance amplification of a
synodic month perturbation in the lunar orbit in proportion to any acceleration
difference

δrEM ∼=
(
1 + 2

ω

ω −Ω

)((
M(G)
M(I)

)
E
−
(
M(G)
M(I)

)
M

)
× (3)

× gSun
ω2 − (ω −Ω)2

cos(ω −Ω)t

∼= 10 η cos(ω −Ω)t meter (4)

in which ω and ω − Ω are the lunar orbit’s sidereal and synodic frequencies,
respectively [2].

The passive laser reflectors placed on the Moon by Apollo astronauts were
developed in Robert Dicke’s research group at Princeton University. One of their
mission goals was to measure the changes in the lunar orbit which would result
from any evolution of Newton’s G in proportion to the Hubble expansion of the
universe

1
G

dG

dt
∼ H ∼ 10−10 per year .

A third LLR measurement of general and historical interest in gravitation
eventually emerged from the data — ‘geodetic precession’ of the lunar orbit.
At the dawn of the general relativistic age, within months of Einstein’s publi-
cation of his gravitational theory in 1916, Wilhelm deSitter applied the theory
to the calculation of post–Newtonian corrections in lunar motion [3]. The most
promising outcome of his analysis was a relativistic contribution to the secular
precession rate of lunar perigee due to the non–radial motion of the Earth–Moon
system through the Sun’s gravitational field

ΩdS =
3
2
GMSun

c2R3 |R× V | . (5)

Angular astronomical observations never became precise enough to see this rela-
tivistic precession, but finally in the late 1980s the accumulated LLR data (since
1969) permitted its measurement [6,5], and with ever–increasing precision in
subsequent years [7,13]. This precession, which can simply be thought of as the
tensor field analog of the electromagnetic field’s spin–orbit force, has also ac-
quired the space–time geometrical interpretation of being the precession of the
local inertial frame which at each instant accompanies the Earth–Moon system
through the Sun’s gravity.

Today, 30 years of LLR data allows not only the three measurements de-
scribed above, but also a comprehensive collection of other measurements which
map out the long range, post–Newtonian interaction between bodies in all its
details. The ranging continues, and the measurement precision should further
improve into the future.
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2 Dynamical Equations for Bodies, Light, and Clocks

General relativity theory makes a number of predictions about details of the
Moon’s orbit which differ from those calculated from either Newtonian gravity
or from alternative relativistic theories. That theoretical situation, coupled with
an accumulated thirty years of laser ranging measurements to the Moon now
reaching sub–centimeter levels of precision, and some fortuitous amplifications
of the theory–differentiating perturbations found in the Sun–Earth–Moon dy-
namical system [8], results in LLR today providing several of the most precise
measurements supporting the hypothesis that general relativity’s tensor gravity is
a complete description of the interaction among bodies at macroscopic ranges.

The most scientifically interesting features of post–Newtonian gravity which
are measured with high precision in LLR are a consequence of the fully general
N–body equations of motion. Analysis groups implement these equations to
fit the LLR data in the solar system’s barycentric frame. The Sun–Earth–Moon
system dynamics is symbolically illustrated in Figure 1, with the rest of the solar
system bodies sufficiently considered at the Newtonian level of perturbation.
The Earth moves with velocity V and acceleration A with respect to the Sun,
while the Moon is moving at velocity V + u and acceleration A + a, and for
purposes of discussing preferred frame effects if gravity is not locally Lorentz–
invariant [4], the Sun (solar system) moves with cosmic velocity W . The post–
Newtonian forces on Earth and Moon from the Sun, each other, and themselves
are dependent on these general motions, and there are non–linear gravitational
forces for which each mass element of the Earth and Moon experiences forces
due to the interactive effect of the Sun’s gravity with the other mass elements
of the same body, or of the other body.

The N–body equation of motion in metric gravity has been formulated in the
literature for the completely general case [10]. Preferred frame effects (i.e., ab-
sence of local Lorentz–invariance in the dynamical equations) then generally will
occur in solar system phenomena due to the high speed with which our system
moves through the cosmos [4,12]. LLR data has been tested for such effects, and
none are found to a part in 104 of their expected magnitude, so I will specialize
consideration to locally Lorentz–invariant gravitational physics. Similarly, the
conservation laws for total energy, momentum, and angular momentum, which
we usually expect to hold in the physics of an isolated N–body system, are also
not assumed in the general case. But analysis of the LLR data shows no evidence
for any conservation law violations, so a–posteriori, I specialize to consideration
of fully conservative, Lagrangian–based equations of motion.

Decades ago Eddington generalized the discussion of the gravitational physics
in the static, spherically symmetric field of the Sun, in order to manifest some of
the novel experimental possibilities from alternative gravitational theories. He
concluded that two free parameters γ and β were sufficient to encompass the
plausible variations in theory. It is remarkable that when the empirically con-
firmed foundations of local Lorentz–invariance and energy–momentum–angular
momentum conservation laws are accepted, then only the two Eddington pa-
rameters γ and β are needed to parameterize the N–body equations of motion
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Velocities and Accelerations of Sun, Earth, and Moon

•
•j

i

Earth

A

Cosmic velocity W

Sun

V

V + u

A + a

Moon

Fig. 1. When formulating the Earth–Moon dynamics in the solar system barycentric
frame, there are post–Newtonian force terms acting between Sun, Earth, and Moon
which depend on either the velocity or acceleration vectors of both the Earth and Moon.
Body self–accelerations also result from the inductive inertial forces acting between the
mutually accelerating mass elements (i, j) within each of these bodies. The intrinsic
non–linearity of gravity also produces net external forces on these bodies proportional
to not only the presence of other bodies, but also to their internal gravitational binding
energies. The motional, accelerative, and non–linear contributions to the three body
system’s dynamics, taken collectively, make LLR a comprehensive probe of the post–
Newtonian dynamics of metric gravity in the general case. If the dynamics is not locally
Lorentz invariant, then the velocity W of the solar system through the cosmos leads to
novel forces and resulting observable effe cts in LLR proportional to W (or its square);
but such effects have not been seen.

for the general dynamical situation. (It is possible that a very small part of
the gravitational interaction could be of a finite range Yukawa nature, rather
than inverse square; this possibility is separately tested with the LLR data and
discussed later.)

For N bodies in general motion and configuration, and valid for a broad class
of empirically plausible metric theories of gravity, the order 1/c2 equations of
motion for these bodies have the form

A ai =

(
1 +

Ġ

G
(t− t0)

)(
M(G)
M(I)

)
i

∑
j

gij (6)

B − (2β − 1)
∑
j,k

(
µk
rik

+
µk
rjk

)
gij
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C +
∑
j

((2γ + 2) vi × (gij × vj) + (2γ + 1) gij · vj vi)

D +
∑
j

(1
2
(
(2γ + 1)v2i + (2γ + 2)v2j − 3(vj · r̂ij)2

)
gij

− (2γ + 1)
(
(gij · vj)vj + (gij · vi)vi

))
E +

1
2

∑
j

µj
rij

((4γ + 3)aj + (aj · r̂ij)r̂ij)

F − 1
2
v2i ai − (ai · vi)vi − (2γ + 1)

∑
j

µj
rij
ai ,

see page 7 of this Volume for an explanation of the symbols. The body grav-
itational mass strengths µi = GMi are indicated along with the Newtonian
acceleration vectors

gij =
µj
r3ij
rji . (7)

Some descriptions of the several lines of this total equation of motion are worth-
while.

Line A: Whenever the metric theory Eddington parameters γ and β differ from
their general relativistic values γGR = βGR = 1, theoretical consistency re-
quires that the gravitational to inertial mass ratio of celestial bodies depend
on the bodies’ gravitational self–energy content

M(G)
M(I)

= 1 − (4β − 3− γ)
G

2Mc2

∫
ρ(x)ρ(y)
|x− y| d3x d3y +O(1/c4) (8)

and Newton’s coupling parameter G will generally vary in time in proportion
to the Hubble expansion rate of the universe

1
G

dG

dt
∼ (4β − 3− γ)H . (9)

In LLR, it turns out that the most precise way to measure any deviation of β
from its general relativistic value is through measurement of theM(G)/M(I)
ratio of Earth as given by Eq.(1).

Line B: Gravity couples to itself, thereby producing non–linear gravitational
forces between bodies.

Line C: Just as pairs of moving charges generate magnetic forces between them-
selves in proportion to the velocities of both charges, pairs of moving masses
generate gravito–magnetic forces between themselves.

Line D: Masses in motion both produce and couple to gravitational fields dif-
ferently than masses at rest.

Line E: Accelerating masses generate inductive gravitational forces on other
proximite masses.

Line F : The inertia of a mass is altered by its motion and by its proximity to
other masses.
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LLR involves precisely measuring the round trip time of propagation of light
between two separate trajectories, and using a clock moving on one of those tra-
jectories. So in the solar system barycentric and isotropic coordinates employed
to express the body equations of motion, there are also model requirements for
the post–Newtonian modifications to the light coordinate speed function

c(r) = c∞
(
1− (1 + γ) U(r)/c2

)
(10)

and for clock rates

dτ = dt
(
1− U(r)/c2

)
, (11)

in which U(r) is the total Newtonian gravity potential function due to solar
system bodies

U(r) =
∑
j

∫
Gρ(r′)j
|r − r′| d

3r′ . (12)

It is necessary to use these equations in the modeling of the LLR data in or-
der to achieve parameter fits consistent with those obtained from geocentrically
modeled satellite laser ranging measurements, and to eliminate relatively small
spurious range effects due to motion of the Earth and Moon into and out of
the Sun’s gravitational potential; otherwise these light and clock equations play
only a supportive role to the body equations of motion in LLR. These equa-
tions for clock rates and light speeds also establish the relationships between
the convenient and global solar system barycentric coordinates for space and
time locations, and the so–called proper local coordinates measured by rulers
and clocks.

3 New Long Range Force?

An additional long–range interaction in physical law would generate a force
between bodies i and j which is likely to have the static limit structure

f i = Ki ∇i
Kj

rij
e−µ rij . (13)

The coupling strengths Ki and Kj , except in special cases, will be body at-
tributes different than total mass–energy (non–metric coupling), and the depen-
dence on distance of this force can either be inverse square or Yukawa–like if the
underlying field transmitting this force between bodies is not massless. Such a
new force will typically produce a difference in the Sun’s acceleration of Earth
and Moon, because these two bodies are of different compositions — The Earth
has a substantial iron core while the Moon is composed of silicate mantle–like
materials. This Equivalence Principle violating acceleration difference amounts
to

|δaem/gs| = Ks

GMs

(
Km

Mm
− Ke

Me

)
(1 + µR) e−µR (14)
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and it will supplement, even in the µ → 0 limit, any difference of accelera-
tions resulting from the previously discussed gravitational to inertial mass ratio
anomalies of the bodies. LLR has become a sufficiently precise tool for measur-
ing |δaem|, it now competes favorably with ground–based measurements of the
universality of free fall.

4 LLR’s Science–Related Range Signals

Assocated with each feature of gravitational theory which is tested by LLR,
there are specific range signals in the LLR data whose measurements yield the
information about theory. Several of these signals are here described.

Violation of Universality of Free–Fall

If Earth and Moon fall toward the Sun at different rates due to either of the
mechanisms given by Eqs.(8) or (14), then the lunar orbit is polarized along the
solar direction. Detailed calculation of this polarization reveals an interesting
interactive feedback mechanism acting between this cosD polarization signal
and the cos(2D) Newtonian solar tide perturbation of the lunar orbit called the
variation). The result is a range signal enhanced from the simpled estimate given
in Eq.(3)

δr(t)me = δme
3
2
Ω

ω
R F (Ω/ω) cosD , (15)

∼= 2.9× 1012 δme cosD cm , (16)

with δem = |(ae − am)/gs|, R is distance to the Sun, Ω and ω are the side-
real frequencies of solar and lunar motion, and D is the lunar phase measured
from new moon. The feedback amplification factor for the lunar orbit is already
F (Ω/ω) ∼= 1.75; it grows further with larger orbits and approaches an interest-
ing singularity for an orbit less than twice as large as that of the Moon [8,9].
The most recent fits of the LLR data find no anomalies in the cosD amplitude
to precision of a few millimeters, so from Eq.(16) this constrains δme to be less
than about 2 × 10−13! This provides a constraint on a combination of the two
Eddington parameters

|4β − 3− γ| ≤ 5× 10−4 . (17)

Computer integration of the complete Eq.(6) for the Sun–Earth–Moon system
dynamics confirms these analytically estimated polarization sensitivities.

From LLR’s measured constraint δem ≤ 2 × 10−13, the curves on the right
in Fig.2, labeled Equivalence Principle are derived and show the constraints on
the strength (relative to Newtonian gravity) as function of force range of any
additionalmetric or non–metric Yukawa interaction which might supplement the
tensor field interaction of general relativity. These curves continue horizontally to
infinite range (inverse square force law) in which domain this LLR measurement
is presently one of the premier probes of the gravitational interaction.
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The Newtonian solar tidal perturbation of the Moon’s orbit at second order in
the orbit’s radius also produces a range oscillation at the synodic frequency; and
it is 110 km in amplitude! But this perturbation, discovered by the generation
after Newton and called the parallactic inequality, has amplitude proportional to
(Ω/ω) r2/R. The least precisely known factor here is the Moon’s mean orbital
size, but it need only be known to half a part in 108 (200 cm) in order that
the parallactic inequality be determined to the sub–millimeter level and thereby
enabling further perturbations of a few millimeters to have significance.

Geodetic Precession of the Local Inertial Frame

If one collects the difference between the Sun’s acceleration of the Moon and of
the Earth which emerge from lines D and F of Eq.(6) because of the different
velocities of these bodies, then a particularly interesting part of this acceleration
difference is proportional to V u times the Sun’s acceleration, with, as shown
in Figure 1, V being the velocity of the Earth relative to the Sun, and u the
velocity of the Moon relative to Earth. These terms form deSitter’s Coriollis–like
acceleration

δam = 2 ΩdS × u , (18)

with

ΩdS =
2γ + 1

2
GMs

c2R3 R× V . (19)

The effect of this perturbing acceleration on the orbit is primarily an additional
rate of perigee precession. This is measured by comparing the Moon’s anomalistic
frequency Ȧ (rate of eccentric motion) with its synodic frequency Ḋ (rate of
monthly phase), and with the latter converted into lunar sidereal frequency ω
(orbital rate) by adding to Ḋ the annual rate Ω which is provided by results from
other solar system experiments. Sidereal minus anomalistic frequency of lunar
motion includes deSitter’s precessional rate as a supplement to the (adjusted)
Newtonian tidal contributions to perigee precession. These lunar frequencies are
measured from range signal perturbations whose size grows linearly in time. The
Moon’s range from Earth includes several dominant oscillatory contributions

δrme = re cosA+ rvar cos(2D) + revc cos(2D −A) + . . . , (20)

with r and e being orbital radius and eccentricity, rvar being the amplitude of
solar tidal perturbation called variation, and revc being the amplitude of the
hybrid evection perturbation due to both the solar tidal force and the eccentric
motion of the Moon. So the least–squares–fit of the LLR data, which yields best
estimates for the two key lunar frequencies, will involve the parameter ‘partials’

∂δrme

∂Ȧ
= −t (re sinA− revc sin(2D −A)) , (21)

∂δrme

∂Ḋ
= −2t (rvar sin(2D) + revc sin(2D −A)) . (22)
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Additional model details bring measurement of the Moon’s out–of–plane motion
frequency into the picture as well, though this does not change the key point here.
Because these rate signals grow in time, measurement precision of the deSitter
precession grows with total time of the LLR experiment, not only because of the
growing quantity and quality of the accumulated range measurements, but also
because of the linear growth in signal sensitivity. A most recent fit of the LLR
data confirms presence of the geodetic precession with precision of 3.5×10−3. The
continued rapid improvement of this measurement into the future is expected.

The mean precession rate of the Moon’s orbit is measured to better than
0.1 mas/year, which is less than a part in 1011 of the orbital rate. Any new
Yukawa–like force of the type given by Eq.(13) will produce an additional pre-
cession δω of lunar perigee in amount

δω

ω
∼= 1

2
KeKm

GMeMm
(µR)2 e−µR . (23)

For such a force with the matched range 1/µ ∼= 2× 1010 cm, LLR observations
limit the strength of that force to be less than 10−11 that of the Newtonian grav-
ity force! This constraint is shown as the left dotted curve in Fig.2 and applies
whether the new force is either metric or non–metric. The curve’s secondary
hump is due to the solar tidal force’s participation in shaping the lunar orbit.
The perigee measurement is an excellent supplement (at finite range) of LLR’s
other key experimental constraint on any new forces, shown by the right curves
in this figure, which results from measuring the equality of the Sun’s acceleration
of Earth and Moon.

Time Evolution of Gravity’s Coupling Strength G

Time evolution of Newton’s coupling parameter G results in proportional evo-
lutions for both the radial size and frequencies of the lunar motion. Similar, but
not identical in detail, effects result when a torque (indicated by L̇) acts on the
orbit

ṙ

r
= − Ġ

G
+ 2

L̇

L
, (24)

ω̇n
ωn

= 2
Ġ

G
− 3

L̇

L
. (25)

During the initial years of the LLR experiment it has been the mean orbital
radius signal

δr(t)me =

(
2
L̇

L
− Ġ

G

)
r (t− t0) , (26)

which has been used to measure Ġ; this involved estimating and subtracting the
part which results from the orbital torque exerted on the Moon by the ocean tidal
bulges on Earth which, because of friction, lag in angle from the direction toward
the Moon. The inclination and 18.6 year precession of the lunar orbit’s plane
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Fig. 2. The constraints provided by LLR on the strength of any additional long range
force, as a fraction of that of gravity, are shown as a function of the additional force’s
Yukawa range. The dashed curve results from measurement of the Moon’s perigee pre-
cession rate; the two peaks reflecting contributions from both the Earth’s gravitational
field and the Sun’s tidal field. The curves on the right (which horizontally continue to
‘infinite range’ or inverse–square) result from the measured equality of the Sun’s ac-
celeration of Earth and Moon. These latter Equivalence Principle results are modeled
two ways — by a supplementary metric force or by a non–metric force.

result in a modulation of the tidal contribution to ṙ which helps the separation of
the two perturbations after accumulation of sufficient years of data. But the data
set produced by LLR has in recent years become sufficiently extended in time so
that the range signals associated with frequency shifts, which grow quadratically
in time, are becoming dominant in the fit for Ġ.

δr(t)me ∼
(
3
2
L̇

L
− Ġ

G

)
rn ωn(t− t0)2 sin(ωnt− θn) . (27)

This new era also shows enhanced ability to separate the tidal torque L̇ per-
turbation from any Ġ perturbation, since the ratio of orbital size and frequency
shifts produced by the two differ somewhat, as seen from Eqs.(24) and (25).
And those parts of the lunar frequencies which result from the annual motion
around the Sun, though fully responsive to an evolving G, are not disturbed by
tidal torque; this also contributes to the separate measurability of Ġ. Recent fits
of almost 30 years of LLR data yield excellent measurement constraint on this
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parameter

Ġ

G
∼= (1 ± 2) 10−12 y−1 (2 σ) (28)

This is about 1/35 the observed Hubble expansion rate of the universe. The size
of the perturbation signals associated with Ġ, which are now growing quadratic
in time, should permit LLR to continue into the future being at the cutting edge
of precision in supplying measurements of, or constraints on, Ġ.

5 The Gravitomagnetic Interaction

Line C of the complete N–body gravitational equation of motion given by Eq.(6)
represents a post–Newtonian gravitational force proportional to the velocities
of both the bodies in the interaction. In analogy with electromagnetic theory,
part of this interaction has been called gravitomagnetism and represents a force
between two ‘mass currents’. From line C of Eq.(6), this acceleration is

δai = (2 + 2γ)
∑
j �=i

Gmj

c2r3ij
rij vi · vj

−
∑
j �=i

Gmj

c2r3ij
[(2 + 2γ)rij · vi vj + (1 + 2γ)rij · vj vi] . (29)

It has been alleged that the presence of gravitomagnetism within the total grav-
itational interaction has not been experimentally confirmed and measured. Dif-
ferent experiments have been under development to see explicitly the effects of
this historically interesting prediction of general relativity. But this gravitomag-
netic acceleration already plays a large role in producing the final shape of the
lunar orbit, albeit in conjunction with the rest of the total equation of motion,
so its presence and strength in the equation of motion can hardly be in doubt.
Because both the Earth and Moon are moving in the solar system barycentric
frame — the frame in which the dynamical equations are formulated and then
integrated into orbits — a gravitomagnetic interaction exists between these two
bodies which have velocities V (t) and V (t)+u(t), respectively, as seen in Fig.1.
Perturbations to the Earth–Moon distance from the gravitomagnetic accelera-
tion result proportional to both V 2 and V u, and they are surprisingly large

δr(t)me ∼= −7
3

V 2

c2
r cos(2D) − 5

GMs

c2r
F (Ω/ω) R cosD

∼= −930 cos(2D) + 1300 cosD cm . (30)

As previously discussed, the amplitudes of the lunar motion at both these periods
(monthly and semi–monthly) are both determined to better than a centimeter
precision in the total orbital fit to the LLR data. It would be impossible to
understand this fit of the LLR data without the participation of the gravito-
magnetic interaction in the underlying model, and with strength very close to
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that provided by general relativity (γGR = 1). It has been argued that the lu-
nar orbit, like near–Earth satellite orbits, could be calculated in the geocentric
frame in which the velocity V essentially vanishes and gravitomagnetic forces
are negligible; therefore LLR ‘measurement’ of gravitomagnetism is somewhat
illusory? But this point of view fails to take local Lorentz invariance (LLI) into
consideration. The very ability to reformulate the equations of motion in the
geocentric frame without introducing new frame–dependent terms, depends on
the LLI of the equations. But it is the entire package of velocity–dependent,
post–Newtonian terms which includes the gravitomagnetic terms, lines C plus
D of Eq.(6), that produce the LLI; the Eddington parameter γ represents the
only freedom remaining in the structure of this LLI package. Our confidence in
the exhibited structure of this total LLI collection of velocity–dependent terms
is proportional to the precision with which the various preferred frame effects in
the solar system proportional to W 2, WV , and Wu have not been seen. LLR,
itself, has contributed to establishment of LLI through its null measurement of
the third type of effects proportional to Wu [12].

6 Inductive (Inertial) Forces

Inductive forces, shown on line E of Eq.(6) and closely related to gravitomag-
netism, also play an important role in determining the final lunar orbit. In such
forces the acceleration of one mass element induces an acceleration of another
proximite mass element (e.g., i and j in Fig.1). From line E of Eq.(6) we have

δai =
∑
j �=i

Gmj

2c2rij
[(2γ + 3)aj + aj · r̂ij r̂ij ] . (31)

These accelerations play a key part in adjusting the inertial masses of the Earth
and Moon because of their internal gravitational binding energies; the absence
or an anomalous strength of these inductive forces would translate directly into
differences between the acceleration rates of these bodies toward the Sun, and
a resultant polarization of the Moon’s orbit in the solar direction. The forces,
Eq.(31), acting between the mass elements of Earth, for example, by themselves
lead to an anomalous polarization of the lunar orbit of very large magnitude

δr(t);∼= (4γ + 10/3) 13 cosD meter . (32)

If the inductive forces are combined with the other post–Newtonian inertial
forces shown on line F of Eq.(6), only then does the total inertial self force of a
body become

δf = − 1
c2

1
2

∑
i

miv
2
i −

G

2

∑
i,j

mimj

rij

 a

− 1
c2

∑
i

mivi vi − G

2

∑
i,j

mimj

r3ij
rij rij

 · a . (33)
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The first line of this self force is simply the inertial force due to the kinetic energy
and gravitational binding energy within the body. The second line represents
contributions to the body’s internal virial which, when totaled over all internal
fields, vanishes for a body in internal equilibrium and experiencing negligible
external tidal forces. These self forces of a body are actually an integral part of
the calculation of the total gravitational to inertial mass ratio of bodies, discussed
previously. They were explicitly discussed here in order to show the large size of
the inductive force contributions.

The inductive forces also act externally between Earth and Moon, producing
a further polarizing perturbation of the lunar orbit. This perturbation, though
now only of order the Earth’s gravitational potential at lunar distance rather
than Earth internal potential, is still orders of magnitude larger than the mea-
surement precision of this polarization achieved in LLR

δr(t)em ∼= 11
2

GMe

c2r

Ω

ω
R cosD ∼= 100 cosD cm . (34)

It is actually almost totally canceled by the non–linear force on the Moon propor-
tional to the product of the masses of Sun and Earth. Like the gravitomagnetic
interactions, the inductive interactions have been confirmed in LLR to have their
general relativistic strength to better than a part in a thousand precision.
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Testing Relativistic Gravity and Measuring Solar
System Parameters via Optical Space Missions
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Hsinchu, Taiwan, 30055 Republic of China

Abstract. For last thirty years, great advances in the testing of relativistic gravity
have come from interplanetary radio ranging and lunar laser ranging. With optical mis-
sion concepts in the interplanetary space, testing relativistic gravity can be improved
by 3 – 6 orders of magnitude and many solar–system parameters can be measured
either for the first time or more precisely. After reviewing briefly dedicated optical
mission concepts — SORT, IPLR and ASTROD together with other optical mission or
mission concepts which have important implications on testing relativity and astrody-
namics — HIPPARCOS, GAIA and LISA, we concentrate on a specific mission concept
— ASTROD to discuss various mission goals and capabilities in detail. ASTROD is
an optical interferometry mission concept. Optical interferometry missions hold great
promises for the testing of relativistic gravity and for the measuring of solar–system
parameters. We discuss the determination of relativistic parameters γ , β and the solar
quadrupole moment parameter J2, the measurements of solar Lense–Thirring effect
together with the application of laser astrodynamics to solar system studies — solar
angular momentum, solar g–modes, asteroid masses, etc.

1 Introduction

We have seen great advances in the testing of relativistic gravity for last thirty
years. This is largely due to interplanetary radio ranging and lunar laser ranging.
Interplanetary radio ranging and tracking provided more stimuli and progresses
at first. However with improved accuracy of 2 – 3 cm from 20 – 30 cm and long–
accumulation of observation data, lunar laser ranging reaches similar accuracy
in determining relativistic parameters as compared to interplanetary radio rang-
ing. In broad lines, both solar–system radio ranging and lunar laser ranging have
tested relativistic–gravity effects to 10−3. If laser ranging can be extended to the
whole solar system, the precision of testing relativistic gravity will be dramati-
cally improved. If this is by laser pulse ranging, the precision will be improved
by 3 orders of magnitude as in SORT (Solar Orbit Relativity Test) [1] and IPLR
(InterPlanetary Laser Ranging) [2]. If this is by laser interferometric ranging,
the precision could be enhanced by another 3 orders of magnitude [3]. That is,
the improvement from the present basis would be 3 – 6 orders of magnitude.

The SORT mission concept is to use laser pulses and a drag–free space-
craft with a precision clock orbiting around the Sun to measure γ and J2 (solar
quadrupole moment parameter) precisely [1]. IPLR mission concept also uses
laser pulses [2].

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 330–343, 2001.
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The ASTROD (Astrodynamical Space Test of Relativity using Optical De-
vices) mission concept is to use drag–free spacecraft in solar orbits employing
laser interferometric ranging techniques together with a constellation of Earth
orbiting satellites to provide high–precision measurement of relativistic effects,
better determination of the orbits of major asteroids, improvement in the mea-
surement of γ, measurement of solar angular momentum via Lense–Thirring
effect and the detection of low–frequency gravitational waves and solar oscilla-
tions in a single mission [3–10].

SORT, IPLR and ASTROD mission concepts are dedicated relativity and
astrodynamical mission concepts using optical devices. There are mission con-
cepts using optical devices which are mainly dedicated to different purposes, but
also have important implication on testing relativity and astrodynamics. The
HIPPARCOS (HIgh Precision PARallax COllecting Satellite) mission gives the
best determination of the PPN parameter γ using light; the precision is only
a factor three short of radio observations [11]. The GAIA (Global Astrometric
Interferometer for Astrophysics) mission concept [12] proposes to measure γ to
1 ppm; this accuracy is similar to a dedicated relativity mission. LISA [13] is
an optical interferometry mission dedicated to the gravitational–wave detection.
Testing the equivalence principle [14] and microscopic physics in gravity [15] us-
ing optical methods in space is also promising. Astrodynamical space missions
using optical interferometry hold great promises for testing relativistic gravity
and measuring solar–system parameters. In the following, we concentrate on
the analysis and discussion of such a mission concept — ASTROD to illustrate
various goals and capabilities in detail.

The objectives of the ASTROD Mission are threefold. The first objective
is to discover and explore fundamental physical laws governing matter, space
and time via testing relativistic gravity with 3 - 6 orders of magnitude improve-
ment. Relativistic gravity is an important cornerstone of physics, astronomy and
cosmology. Its improved test is crucial to cosmology and modern theories of grav-
itation including superstring theories. Included in this objective is the precise
determination of the relativistic parameters β and γ, the improved measurement
of Ġ and a precise determination of an anomalous, constant acceleration directed
towards the Sun.

The second objective of the ASTROD mission is the high–precision measure-
ment of the solar–system parameters. This includes: (i) a measurement of solar
angular momentum via Lense–Thirring effect and the detection of solar g–mode
oscillations via their changing gravity field, thus, providing a new eye to see
inside the Sun; (ii) precise determination of the planetary orbit elements and
masses; (iii) better determination of the orbits and masses of major asteroids.
These measurements give better solar dynamics and probe the origin of our solar
system.

The third objective is to detect and observe gravitational waves from massive
black holes and galactic binary stars in the frequency range 50 µHz to 5 mHz.
Background gravitational–waves will also be explored.
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A desirable implementation is to have two spacecraft in separate solar orbit
carrying a payload of a proof mass, two telescopes, two 1 - 2 W lasers, a clock
and a drag–free system, together with an Earth reference system. The Earth
reference system could be ground stations, Earth satellites and/or spacecraft
near Earth–Sun Lagrange points. A proposal is submitted to ESA in response
to call for mission proposals for two–flexi–missions F2/F3 with international
collaboration [4].

In 1993, we have proposed to use laser astrodynamics to study relativistic
gravity and to explore the solar system [5]. With a multi–purpose astrodynam-
ical mission proposed in 1994 [6,7], we reached the ASTROD mission concept.
Our ASTROD mission concept is presented in the 1996 COSPAR Assembly
[7]. ASTROD in its relation to gravitational–wave detection is presented in the
TAMA Gravitational–Wave Workshop [8]. ASTROD’s sensitivity in measuring
Ġ is presented in the Pacific Conference on Gravitation and Cosmology [9]. Pre-
liminary calculation of asteroid perturbations and investigation in the possible
determination of asteroid masses through range observations of the ASTROD
mission is published in Planetary and Space Science [10].

In Section 2, we discuss the ASTROD payload concept and its technological
development requirements. In Section 3, we review the orbit simulation with
uncertainty distributions for the ASTROD to investigate the accuracy for the
determination of relativistic parameters γ, β and solar quadrupole parameter J2,
together with other standard solar–system parameters. In Section 4, we discuss
the method to measure the solar angular momentum and low–l solar oscillations.
In Section 5, we discuss the strategy and sensitivity of detecting gravitational
waves. In Section 6 we discuss alternate mission concepts. In Section 7, we present
an outlook.

2 ASTROD Payload Concept and Technological
Development Requirements

For the realization of the ASTROD mission concept, it is desirable to have a
fleet of drag–free spacecraft in solar orbits together with an Earth reference
system. The Earth reference system could be ground stations, Earth satellites
and/or spacecraft near Earth–Sun Lagrange points. Each spacecraft in solar
orbit communicates and ranges with the Earth reference system. When two of
them are close to each other, they can communicate and range with each other.
For the fleet of spacecraft in solar orbits, a two spacecraft implementation is to
have each spacecraft in separate solar orbit carrying a payload of a proof mass,
two telescopes, two 1 - 2 W lasers, a clock, and a drag–free system [6,7]. We call
this the basic ASTROD.

With the precision requirement of this mission, drag–free is a must. Field
Emission Electric Propulsion (FEEP) system is under development in Centro-
spazio (Italy) and Bradford Engineering (Holland). Accelerometer is under de-
velopment in ONERA.
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Many of the developments for LISA [13] can be applied to ASTROD. Laser
and telescope are two important items. Due to the absolute requirement, AS-
TROD needs a demanding laser metrology system and the proof mass needs to
be specially designed.

In JPL, space flyable Hg+ frequency standards with 5 kg mass estimate are
under development. The demonstrated frequency stability to below 10−15 of
existing Hg+ standards is hoped to be maintained or improved. An absolute
stabilized laser can also serve as a clock. More thorough study of the payload
concept needs to be done in the near future.

There are several technological developments required for this mission:

(i) Weak light phase locking to 100 fW incoming light,
(ii) Heterodyne interferometry schemes and data–analysis technique,
(iii) Light–weight precision space clock and/or absolute–stabilized laser to 10−15,
(iv) Accelerometer with noise level 10−13 - 3×10−15 m/s2

√
Hz from 50 µHz - 5

mHz and absolute stability of 10−13 - 10−15 m/s2,
(v) A laser metrology system to monitor the positions of various parts of the

spacecraft to facilitate gravitational modelling.

With 100 fW, there still are 5 ×105 photons/s. This is enough for 100 kHz fre-
quency tuning. At present, University of Glasgow has achieved 85 pW weak–light
phase–locking, and National Tsing Hua University has achieved 2 pW weak–
light phase–locking with 0.2 mW local oscilator. Further improvement is needed
in this aspect. Heterodyne interferometry schemes has been proposed by JPL
people [16] for unequal arms. These schemes can be adapted to the ASTROD
mission. Data–analysis for detecting gravitational waves and solar oscillations
are demanding and needs to worked out. Laser stabilization is a subject under
active study in University of Konstanz and University of Tokyo. Accelerometer
requirement is very severe and needs to be developed in steps. This is in the
expertise of ONERA. The absolute requirement may need to be implemented
using absolute laser metrology.

3 Orbit Simulation

From the mission orbit design process, we have reached the following orbits for
the two spacecraft. Two spacecraft are to be launched with one going into an
inner orbit and the other one going into an outer orbit. After two and half years,
both will be on the other side of the Sun opposite the Earth and stay near the Sun
in apparent position with certain time on one side of the Sun and certain time on
both side of the Sun for a total period of 120 days. Second–order relativistic light
retardation and solar angular momentum can be measured during this period
of time. During working time of the two spacecraft, gravitational waves can be
monitored.

In order to specifically calculate the orbit, we assume an initial spacecraft
location in geostationary orbit, one located at the midday longitude and one
at midnight, and we assume they are launched from these locations to their
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Fig. 1. Left: The inner and outer orbits of two ASTROD spacecraft in the Sun–Earth
fixed frame; and the triangles formed by the positions of the two spacecraft and Earth
at 700, 800, and 900 days of mission time. Top right: The apparent angles of the two
ASTROD spacecraft located respectively on the inner and outer orbits near two and
half years after launch. Bottom right: apparant angle Y vs. mission time.

interplanetary trajectories on June 10, 2005. Each spacecraft orbit is propagated
using a sixth–order Runge–Kutta method with the force term calculated using
the JPL DE403 Ephemeris data. The computed results are shown in Fig. 1. On
the left of Fig. 1 the orbits are drawn in the Sun–Earth fixed frame. On the right,
the apparent angles of the two spacecraft from 800 to 1034 days after launch as
viewed from the Earth are shown. During this period, two–way ranging between
each spacecraft and Earth reference system, and between two spacecraft will be
implemented. More details of the orbit design process including fine tuning to
have a second close–up around 7.5 years can be found in reference [17].

In reference [18], we have implemented an orbit simulation for ASTROD.
In this section, we review this simulation. First we establish a post–Newtonian
ephemeris and extend it to a stochastic one. With an appropriate modelling of
local acceleration noises and instrumental noises, we then determine the accu-
racy of parameter determination for β (nonlinearity parameter), γ and J2 (solar
quadrupole moment parameter).
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3.1 Post–Newtonian Ephemerides and ASTROD Orbits

The barycentric metric with solar quadrupole moment is given as follows
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[
1− 2

∑
i

mi

ri
+ 2β

(∑
i

mi

ri

)2

+ (4β − 2)
∑
i

mi

ri

∑
j �=i

mi

rij

−2γ + 1
c2

∑
i

mi

ri
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with ri = x−xi, rij = xi−xj ,mi = GMi/c
2,Mi’s the masses of the bodies with

M1 the solar mass [19]. J2 is the quadrupole moment parameter of the Sun. ẑ is
the unit vector normal to the elliptic plane. The solar angular momentum has a
7◦ tilt with respect to ẑ. This is marginally detectable in our simulation. To be
simple, we assume that they are in the same direction.

The equations of motion of N–mass problem associated with this metric can
be derived from geodetic variational principle and used to build our computer–
integrated ephemeris (with γ = β = 1, and J2 = 2 × 10−7) for nine–planets,
the moon and the sun. The positions and velocities at the initial time, 2005.6.10
0:00, are given in advance by the DE403 ephemeris. The evolution is solved
by using the 4th–order Runge–Kutta method with the stepsize, h = 0.01 day.
The stepsize, h = 0.01 day, is chosen such that the computer efficiency and the
numerical accuracy can both approach the requirement. With this tiny stepsize,
the numerical discrepancy is within about 10−13 AU for all positions and 10−13

AU/day for velocities. This ephemeris is then used to calculate the orbits of
inner and outer spacecraft, and the light travel times and Shapiro time delays.

3.2 Simulation of ASTROD Ranging Data

Now, we use a stochastic model to generate simulated ASTROD ranging data.
The ranging observation Zk at time instant tk is expressed as an explicit function
h(u, tk) of uncertain parameters plus a superposing noise term Vk as follows,

Zk = h(u, tk) + Vk , (2)

where u=(u1, u2, ...) are uncertain parameters to be estimated, e.g., u1 = γ, u2 =
β, u3 = J2 etc. u normally includes masses and initial states of planets. However,
for simulating the uncertainties of relativistic parameter determination, we only
need to include a few such parameters.

In the noise term Vk, we include two types of errors:

(1) the uncertainty due to the imprecision of the ranging devices,
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(2) unknown accelerations due to the imperfections of the spacecraft drag–free
system.

We treat the first type of error as white Gaussian random noise superimposed
into the ranging measurement. The present achievable timing error is 50 ps [20].
If there are interruptions of interferometric signals, this timing error would con-
stitute a limit for error reductions. Thermal expansion errors and all other errors
due to optical devices are required to be below this level. Hence, conservatively,
we take 50 ps to be the standard deviation of this type of errors. We assume the
mean of this error to be zero. If the interferometric signals are continuously mon-
itored, 1 fs (subwavelength) resolution is there; when corresponding magnitudes
of other errors can be minimized, great improvement can be envisaged.

As to the second type of errors, there are unknown accelerations fixed or con-
fined in directional angles with respect to the spacecraft orientation or spacecraft–
Sun orientation and unknown accelerations truly random in directions. In this
paper, we only consider the unknown accelerations truly random in directions.
For modelling, we assume the distribution of these accelerations is Gaussian in
magnitude with σ = 10−15 m/s2 and change directions every 4 hours (equivalent
to 10−13 m/s2/

√
Hz for f ∼ 10−4 Hz). We will consider the others in a separate

paper. To generate a sequence of simulated observations, the simulation pro-
gram numerically integrates the equations of motion adopted for the stochastic
model. The equations of motion are unchanged for all solar objects except the
spacecraft. For the spacecraft, the equations of motion are modified by adding
the noisy accelerations. After the integration and the total light travel time is
solved, the first type of noise (50 ps–half–width Gaussian) is added to obtain the
ranging simulation. The deviations of two simulated rangings from the fiducial
ranging for the inner spacecraft are shown in Fig. 2.

3.3 Estimation of Parameters

We use sequential Kalman filter data processing [21] to obtain the estimated
uncertainty of the relativistic parameters to be determined from the mission as

Fig. 2. Deviations of two simulated rangings from the fiducial ranging for the inner
spacecraft. The smooth curves are the ± standard deviation of simulations vs. epoch.
For 800–1050 days of the mission, the time density is 10 times higher.
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Fig. 3. σγ , σβ , σJ−2 as functions of mission epoch.

a function of epoch. The relativistic parameters β and γ, the solar quadrupole
moment parameter J2 together with initial state of the spacecraft and mass
parameters of Sun, Mercury, Venus, Earth system, Mars and Jupiter are esti-
mated. The uncertainties of β, γ and J2 versus mission epoch estimated for inner
spacecraft are shown in Fig. 3. With the 50 ps ranging uncertainty, γ can be de-
termined to 7.7×10−7. When ranging uncertainty is decreased, better resolution
of γ in the range 10−7−10−9 is possible. In addition, β and J2 can be determined
to 10−6 and 4.5×10−8 respectively, with 50 ps ranging uncertainty and 10−15

m/s2 (time scale: 4 hours) accelerometer random noise uncertainty.
Extension of simulation [22] to the determination of the masses of three big

asteroids (Ceres, Vesta and Pallas) [10], the rate of change of the gravitational
constant, and an anomalous constant acceleration directed towards the Sun [23]
has been completed with good results.

4 Solar Angular Momentum and Solar Oscillations

To measure the solar Lense–Thirring effect, we need the difference, t1 − t2, in
the two round trip propagations, ERS (Earth Reference System; Earth–system
basis)→ S/C 1 (Spacecraft 1)→ S/C 2 (Spacecraft 2)→ ERS and ERS→ S/C
2 → S/C 1 → ERS. Newtonian calculation of t1 − t2 for 800 - 1034 days after
launching gives about 10 ms. The Lense–Thirring effect variation for this period
of time is about 100 ps and has a totally different signiture. For a laser stability
of 10−15-10−13, the accuracy for measuring the round–trip time difference t1−t2
(about 10 ms) is 10 as - 1 fs and the sensitivity of measurement of the Lense–
Thirring effect is 10−7 – 10−5 by means of this interferometric measurement.
From a preliminary theoretical modelling, we advocate that the Lense–Thirring
effect can be determined to 0.1% or better.

Since the solar Lense–Thirring effect is proportional to the solar angular
momentum, this measurement of the solar Lense–Thirring effect will give an
accurate value of the solar angular momentum. At present, there is about 10%
uncertainty [24] in the solar angular momentum in various solar models [25–28].

The strain sensitivity of ASTROD spacecraft will reach 10−20 - 10−21/
√
Hz in

the 50 µHz - 5 mHz frequency range. The low l p–modes solar oscillations will be
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readily detectable through their changing gravity field if there is no background
“noise” masks these signals. The g–mode sensitivity of ASTROD is about 2
orders of magnitude better than LISA and SOHO. ASTROD will have a good
chance to detect and observe these g–mode oscillations. This will create a new eye
to see inside the Sun. However, all will depend on whether the background noise
can be resolved. Hils, Bender and Webbink [29] estimated that there are about
3×106 short–period white–dwarf binaries producing a large gravitational wave
background in the relevant frequency band. The recent discovery of two white–
dwarf binaries [30,31] (periods: 3.47 h and 4 h) give input for a better estimate of
the population. We are analyzing in the following how this background noise can
be lifted for the gravitational–wave detection of the solar g–mode, p–model and f–
mode oscillations. From more precise orbit determinations, the solar quadrupole
moment and higher moments can be measured. This together with solar angular
momentum measurement and solar oscillation measurement constitute a gravity
eye to see inside the Sun.

Efforts to see inside the Sun have stimulated important works in solar neu-
trino experiments and helioseismological observations. Recently, Schutz [32],
Gough [33], and Cutler and Lindblom [34] suggested the possibility that solar
oscillations might be observable by measuring their associated gravitational per-
turbations. With a detailed analysis, Cutler and Lindblom [34] concluded that
LISA may be confusion limited at the relevant frequencies due to the galactic
background from short–period white dwarf binaries and present estimates of the
number of these binaries would require the solar modes to have energies above
about 1033 erg to be observable by LISA.

ASTROD has better sensitivity in the frequency–band considered. In the first
TAMA Workshop on Gravitational Wave Detection, we reported that the confu-
sion limit might be lifted for the gravitational detection of the solar oscillations
for ASTROD due to higher strain sensitivity and its orbit configuration [8]. In
the third Amaldi Conference on Gravitational Waves, we present a scheme for
the sparation of the gravitational–wave signals and the solar oscillation signals
[35]. We review the scheme in the following.

The change of external gravitational potential, δU (s)
nFm, due to the (snFm) mode

oscillation of the sun can be written in the following simple form:

δU
(s)
nFm = − 4π

2]+ 1
ξ̄
(s)
nFm

R�
GM�
R�

(
R�
r

)F+1

YFmeiωt. (3)

The surface helioseismology favors p–mode detection while gravitational he-
lioseismology favors g–mode detection. Table 1 compiles some important param-
eters for selected solar oscillations.

For the ASTROD, the strain sensitivity for one year intergation for Signal–
to–Noise–Ratio S/N = 5 threshold is 10−23 in the frequency range 100 µHz - 1
mHz. With this strain sensitivity, the ] = 2 mode detection threshold is about
1 mm for ξ̄. This is about 2 orders of magnitude more sensitive than LISA. The
time constants for solar oscillations are long — over 106 yr for low l g–mode
oscillations [36] and over 2 – 3 months for low l p–mode oscillations [37]. The
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distance to the Sun of the inner ASTROD spacecraft varies from 0.77 AU to 1
AU and that of the outer ASTROD spacecraft varies from 1 AU to 1.32 AU.
When the spacecraft move in solar orbits, the amplitude and direction of the
solar oscillation signals receive deep modulations in addition to the modulations
due to spacecraft motion and orientation. The time constant for the gravitational
radiation (or orbit evolution) of the Close White Dwarf Binaries (CWDB) is more
than 106 yr, and hence the CWDB confusion background is steady in the inertial
space. This background is modulated only by the orientations and motions of
spacecraft, not by the distances and orientations of the spacecraft relative to
the Sun. With this extra modulation — deep in magnitude and direction, the
detectability of the solar oscillation signals reaches at least 5 orders lower than
the confusion limit, i.e., to the instrumental noise floor.

Table 1. Frequencies, energies, and surface velocity amplitudes of various l=2 modes
of solar oscillations with ξ̄=1mm [35]

Mode Frequency (µHz) Energy (erg) Surface radial velocity (mm/s)

g3 220.4 2.82 × 1027 0.183

g2 254.0 3.93 × 1027 0.308

g4 192.2 4.08 × 1027 0.138

p1 381.6 5.13 × 1027 1.15

p2 514.4 3.56 × 1028 8.20

p3 663.6 1.96 × 1029 35.5

5 G–Wave Detection

For gravitational–wave detection, we compare the following two paths through
the whole missions except for the period 850 - 1000 days: (i) ERS → S/C 1
→ ERS → S/C 2 → ERS; ERS → S/C 2 → ERS → S/C 1 → ERS. The
time difference of the two paths varies up to 0.34 s. A laser linewidth of 1 Hz
would keep the interference coherent. The sensitivity 10−20–10−21/

√
Hz would

be comparable to that of LISA, but more sensitive to lower frequency due to
long path. The round–trip interference for measurement of the Lense–Thirring
effect also has some sensitivity on the gravitational wave [8]. Various methods
of Doppler tracking and noise substraction schemes [16] can also be applied here
for detection of gravitational waves.

Now we discuss the ASTROD sensitivity for gravitational waves following our
presentation in the LISA Symposium (ref. [21] in [8]). Let the distance between
the spacecraft (S/C 1) in the inner orbit and the ERS be l1, and that for the
spacecraft (S/C 2) in the outer orbit and the ERS be l2. To make a Michelson
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Fig. 4. Gravitational–wave detection topology. Path I: ERS → S/C 1 → ERS → S/C
2 → ERS. Path II: ERS → S/C 2 → ERS → S/C 1 → ERS.

interferometer from these two arms would require a linewidth of 1 mHz. To
minimize the armlength difference, we propose to compare the following two
paths through the whole mission except for the period 850 - 1000 days: (I)
ERS→S/C 1→ERS→S/C 2→ERS; (II) ERS→S/C 2→ERS→S/C 1→ERS. The
time difference of the two paths varies only up to 0.34 s. A laser with linewidth of
1 Hz would keep the interference coherent. The phase sonsitivity of this topology
to gravitational wave is calculated as follows. In the plane containing S/C 1, S/C
2 and ERS (for simplicity, we use L1 as ERS), draw a reference line L1→A as in
Fig. 4. Let the angle between ERS→S/C 1 and ERS→A be θ1, and that between
ERS→S/C 2 and ERS→A be θ2. First consider a monochromatic gravitational
wave with + polarization and strain amplitude h+ coming in perpendicular to
the orbital plane. The change of length scale in the L1→A direction at time t is
h+ sin(2πfGt). For laser light travelling through Path I and Path II to return at
t simultaneously, the optical path difference is

∆l = 4h+(c/fG)(cos(2θ1) + cos(2θ2))×
[cos(2πfG(τ1 − τ2)) + cos(2πfG(τ1 + τ2))] cos(2πf(t+ φ0)) , (4)

with τ1 ≡ 2l1/c, and τ2 ≡ 2l2/c. Hence phase difference of the laser light is

∆φ = 4h+(f/fG)(cos(2θ1) + cos(2θ2))×
[cos(2πfG(τ1 − τ2)) + cos(2πfG(τ1 + τ2))] cos(2πf(t+ φ0)) . (5)

This is the laser phase senstivity for our gravitational detection topology. For
× polarization, simply rotate by 45◦. For non–perpendicular incidence, insert a
cosine factor.

The theoretical sensitivity limit (shot noise limit) in the strain for gravitation-
al-wave detection is inversely proportional to P 1/2l with P the received power
and l the distance. Since P is inversely proportional to l2 and P 1/2l is constant,
this sensitivity limit is independent of the distance. For 1 - 2 W emitting power,
the limit is 10−21/

√
Hz. As noted in the LISA study, making the arms longer

shifts the whole time–integrated sensitivity curve to lower frequencies while leav-
ing the bottom of the curve at the same level. With the same laser power, the
ASTROD sensitivity would be shifted to lower frequency by a factor up to 60
(30 in average) if the technological requirements in Section 2 are met.
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For one–spacecraft ranging with one leg on earth, 10 ps accuracy in the
transit time variation is achievable. With 105 - 106 Hz repetition rate and a
distance of 2 AU, the sensitivity can reach 10−17/

√
Hz when an ultrastable clock

of comparable stability is available in the future. In the T2L2 project study of
satellite time transfer by laser light, precision and accuracy are aimed at the
order of 10 ps. For gravitational–wave detection, this implies a sensitivity of
10−16-10−17/

√
Hz.

6 Mini–ASTROD and Super–ASTROD

ASTROD is a relativity mission concept encompassing multipurposes. With its
technological requirements achieved, it would give a gravitational–wave sensi-
tivity similar to LISA, but shifted to lower frequencies. ASTROD would com-
plement LISA in probing the early Universe and study strong–field black hole
physics.

A down–scaled version, i.e., Mini–ASTROD with one spacecraft carrying
a payload of a telescope, two lasers, and a clock will test the optical scheme
and yet give important scientific results. These scientific results include a better
measurement of γ to 1 ppm [38], a better sensitivity (1 - 2 orders better) in using
optical Doppler tracking method for detecting gravitational wave [39,40], and a
potential of measuring the solar angular momentum via Lense–Thirring effect
[41]. It is important to do things in appropriate steps and we are now studying
this mini–ASTROD mission concept in more details.

With the advance of laser technology and the development of space interfer-
ometry, one can envisage 15 W (or more) compact laser power and 2 - 3 fold
increase in pointing ability. With these developments, one can increase the dis-
tance from 2 AU for ASTROD to 10 AU (2×5 AU) and the spacecraft would
be in orbits similar to Jupiter’s. Four spacecraft would be ideal for a dedicated
gravitational–wave mission (super–ASTROD).

7 Outlook

Optical space missions will be important in testing relativistic gravity and mea-
suring solar–system parameters. Laser Astrodynamics in the solar system en-
visages ultraprecision tests of relativistic gravity, provision of a new eye to see
the solar interior, precise measurement of Ġ, monitoring of the solar–system
mass loss, and detection of low–frequency gravitational waves to probe the early
Universe and study strong–field black hole physics together with astrophysics of
binaries. One spacecraft and multi–spacecraft mission concepts — SORT, Mini–
ASTROD, ASTROD and Super–ASTROD are in line for more thorough mission
studies. In view of their importance both in fundamentals and in technology de-
velopments, mission concepts along this line will be realized and fruitful.
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Clocks for Length and Time Measurement

Fritz Riehle
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1 Introduction

The evolution of various fields of science, technology, trade or legal metrology
is intimately connected with the ability to relate measurements with each other
that were performed at different places and different instants of time. For this
purpose a practical system of units of measurement i.e. the International System
of Units (SI) has been established by international cooperation [1]. In this SI, the
metre and the second represent the base units of length and time, respectively.
From all units these two can be realized with by far the highest accuracy since
they are based on frequency measurements and most accurate clocks. In contrast
to clocks based on mechanical properties of macroscopic bodies, e.g., pendulum
clocks, quartz clocks or pulsars, the frequency reference for a suitable oscillator
in atomic clocks is mainly determined by the intrinsic properties of suitable ab-
sorbers like atoms, molecules or ions. These atomic properties are determined
by fundamental constants resulting from the basic interactions between the ele-
mentary constituents of matter. Following the generally accepted idea that the
properties of each atomic absorber of a selected species are the same, identical
clocks can be set up in any desired number and at any desired place.

Consequently, the definition of the second is based on an atomic frequency:
The second is the duration of 9 192 631 770 periods of the radiation corre-
sponding to the transition between the hyperfine levels of the ground state of the
caesium-133 atom [2]. In the SI, this definition is also the basis for the length
unit which is related to the second by a fundamental constant i.e. the speed of
light. The metre is the length of the path travelled by light in vacuum during a
time interval of 1/299 792 458 of a second [3]. This definition can be applied
directly to measure large distances, the distance to the moon, e.g., as has been
done with unprecedented accuracy (see contributions of K. Nordtvedt, this vol-
ume on p.317). The large value of the speed of light, however, prevents one from
measuring distances on a laboratory scale with the required accuracy. The def-
inition corresponds to a fixed speed of light of c = 299 792 458 m/s and at the
same time fixes the ratio between the vacuum wavelength λ and the frequency
ν = c/λ of a light wave. Hence, the vacuum wavelength of a light wave used for
accurate interferometric distance measurements is known, in principle, with the
same accuracy as the frequency of the light wave. Consequently, time measure-
ments as well as distance measurements rely on frequency standards or clocks,
i.e. oscillators with known frequencies. At present, clocks that are used for time
measurements predominantly operate in the radio frequency (rf) regime whereas
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for length measurements optical clocks are used. In the context of general rel-
ativity, the definitions of the second and the meter have to be considered as
units of proper time and proper length, respectively. Depending on the required
accuracy, it is often necessary to apply general relativity to metrology [4].

In this lecture, Sect. 2 concentrates on the basics of atomic clocks and re-
views the status of rf clocks (Sect. 3) and optical clocks (Sect. 4). In Sect. 5
an example of the required frequency links between both regimes is given that
now allows to use rf clocks and optical clocks in the same way for length and
time measurements. Sect. 6 concludes with optical frequency standards for the
realization of the meter.

2 Basics of Atomic Clocks

2.1 Definitions

The definition of the second [2] does not include a definite instruction how to
build a clock. However, the statement “the Caesium-133 atom” makes some im-
plicite assumptions. First, the transition frequency is assumed to be the same in
all Caesium-133 atoms used in the clock. This requires that the clock is operated
in such a way that the ideal conditions of atoms isolated and at rest are fulfilled.
In reality, these ideal conditions can be realized only approximately and there
will be frequency offsets due to spurious effects. The accuracy of a clock can be
measured only if a more accurate clock is available. Otherwise, as it is the case for
the best primary standards the magnitude of the uncertainty of the knowledge
about these offsets is a measure of the accuracy (or uncertainty) one has to at-
tribute to a real clock [5]. In this sense, the uncertainty represents the estimated
magnitude of a possible deviation of its frequency from the unperturbed atomic
frequency. Within a limited measurement time τ the actual mean value of the
frequency of a clock may differ by a larger magnitude as compared to the one
given by the uncertainty resulting from various noise processes associated with
the realization of the clock e.g. by the shot–noise of the atomic sample or noise
in the electronics. A generally agreed measure of the frequency instability of a
clock is given by the relative two–sample standard deviation, or Allan standard
deviation σy(2, τ) [6]

σy(2, τ) =

√〈
(yk+1 − yk)2

2

〉
. (1)

Here, yk is the average value of the normalized frequency difference y(t) in an
arbitrary time interval tk to tk + τ between the clock under investigation and a
suitable reference. The normalized frequency is used rather than the frequency
to allow the comparison of the performance of clocks operating at very different
frequencies. For short times τ the frequency stability is often limited by the
counting statistics

σy(2, τ) = const×
(
Q× S

N
×
√

τ

s

)−1
(2)



Clocks for Length and Time Measurement 349

where Q ≡ ν/∆ν is the quality factor of the resonance depending on the
linewidth ∆ν and the center frequency ν, S/N is the signal–to–noise ratio in
a bandwidth of 1 Hz. The constant depends on the lineshape of the resonance
line and is of the order unity.

2.2 Perturbing Effects and Remedies

The ideal reference in an atomic clock or frequency standard would therefore
comprise of an absorber at rest in an environment free of perturbations by other
particles or fields with a high line quality factor Q and a strong signal when
probed by an external oscillator. The art of making a perfect clock depends on
the ability to realize this ideal situation as close as possible.

Limited Interaction Time The basic limitation to the quality factor Q is
given by the frequency uncertainty ∆ν ∼= 1/T resulting from the time T the
absorbers are interrogated. Consequently, one is interested first to use absorbers
with narrow line–width transitions and second to allow for the required long
interaction time of the external field with the quantum absorber. Such long–
lived states are provided e.g. by the ground states of atoms and ions splitted due
to the hyperfine interaction leading to frequency separations in the rf domain up
to several 10 GHz (see table 1). Furthermore, atoms, ions or molecules sometimes
have long–lived electronic states with optical transitions corresponding to several
hundred terahertz (see e.g. Table 2).

To utilize the potential of these lines one has to allow for an interaction time
of milliseconds and above. Long interaction times can be achieved by several
methods that find application in various frequency standards. There are long
beam machines based on atomic or molecular beams of low velocities together
with separated field excitation [7] (Ramsey excitation) as used in the the con-
ventional Cs atomic clocks (Sect. 3.1). In the hydrogen maser the atoms are kept
inside the interaction volume by containing them in a bulb. Laser cooled ballis-
tical atoms allow easily for interaction times of a millisecond and this time can
be increased to about a second in a so–called atomic fountain (Sect. 3.3). The
longest interaction time can be achieved with ionized particles in a so–called ion
trap in the harmonic potential well (see Sect. 3.4).

Velocity of the Absorbers Even if an absorber with a very small natural
line width has been chosen the center of the resonance line and its width can
be seriously affected by the velocity of the absorber. The shift of the absorbed
frequency resulting from the first–order Doppler effect ∆ν(1st order) = k · v/2π
can be as high a 10−6 for thermal absorbers. This shift depends on the direc-
tion of the wave vector k and on the direction of the velocity v of the ab-
sorbers. Consequently, its influence can be largely avoided by a perpendicular
alignment of both vectors as it is done in a beam apparatus. Other methods
determine the influence of the first–order Doppler shift and subsequently cor-
rect the corresponding frequency offset e.g. by re–directing one of the vectors
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by a so–called beam reversal technique. These methods cannot be applied to
the second–order Doppler shift resulting from the time dilation of the absorber
which is ∆ν(2nd order) = −ν · v2/(2c2) when observed in the laboratory frame.
For the aforementioned thermal velocities it can be as high as ∆ν/ν ∼= 10−12.
This shift scales with the square of the velocity of the absorbers and can only be
reduced by orders of magnitude if absorbers of low velocities are utilized. The
use of slow absorbers also increases the interrogation time of the field with the
atoms and therefore leads to a reduced transit–time broadening.

With neutral atoms two basically different approaches are used to reduce
the influence of the first–order Doppler effect. The first one selects a group of
slow absorbers out of a broad velocity distribution e.g. by using transversal ex-
citation of absorbers in collimated molecular and atomic beams or by selecting
only the slow molecules out of the thermal distribution [8] leading to a reduc-
tion of the relevant velocity spread by several orders of magnitude. The second
approach reduces the width of the velocity distribution by cooling the ensemble.
The positive result of this approach is that more absorbers are compressed into
the desired velocity range and the signal used for frequency stabilization of the
oscillator to be locked is increased. Laser cooling of atoms now represents a well
established and acknowledged technique [9–11] to reach low velocities. Two–level
atoms with a fast cycling transition can be cooled to the so–called Dopppler limit
kBT = �γ/2, where γ is the line width of the cooling transition. As an example,
the root–mean–square velocity corresponding to this temperature is 9 cm/s for
Cs. Often, laser cooling is performed in a magneto–optical trap (MOT) [12]. In
a MOT, photons from six orthogonal laser beams with frequencies below the
atomic resonance are absorbed by the atoms with velocity components coun-
terpropagating to the laser beams. The subsequent emission of photons from
the spontaneous decay of these excited atoms is isotropically whereas the ab-
sorbed photons always have the same momentum k of the laser beam. Hence, the
atomic velocity after a large number of absorption/emission cycles is reduced. In
the MOT, a magnetic field increasing into all spatial directions with the zero of
the field located at the center of the six crossing beams shifts the energy levels
of the atoms by the Zeeman effect. Atoms outside the center of the MOT expe-
rience a stronger repelling force due to the bigger Zeeman shift than the ones
close to the center. Consequently, the combined influence of the light field and
the magnetic field leads to cooling and trapping of the atoms in a MOT. The
achievable velocity can be significantly lower as given by the Doppler limit in
the case of multi–level atoms, due to the mechanism of the so–called polariza-
tion gradient cooling [10] leading to an rms velocity of 1.1 cm/s in Cs. Raman
cooling methods can achieve even lower velocities [13]. Laser cooling works also
very efficient for trapped ions [14], where specific cooling methods for the bound
ions as e.g. resolved–optical–sideband cooling allow to cool a single ion close to
the zero point energy [15].

Interaction with Fields and Particles The interaction of the absorbers with
external fields perturbs the quantum states of the absorbers and consequently
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Table 1. Ground–state splitting due to the hyperfine structure

H 1 420 405 751.770 Hz ± 0.003 Hz H–maser [5]
87Rb 6 834 682 610.904 29 Hz ± 0.000 09 Hz Rb–clock [19]
133Cs 9 192 631 770 Hz Cs–atomic clock [5]

171Yb+ 12 642 812 118.466 ± 0.002 Hz Yb+–ion trap [20]
199Hg+ 40 507 347 996.841 59 ± 0.000 44 Hz Hg+–ion clock [21]

leads to frequency splitting, shifts or broadenings that, even small, often cannot
be tolerated when the highest accuracy is aimed at. Examples include Stark and
Zeeman shifts resulting from static magnetic and electric fields but also from ac–
Stark shifts as a result of trapping fields, stray light or thermal radiation [16].
The interaction with other particles of the same species [17] or of other species
[18] may lead to collisional shifts. The degree to which these influences can be
suppressed and corrected for is reflected in the achieved accuracy of a clock.

3 Clocks Based on rf Transitions

Fig. 1. Hyperfine structure of Caesium in
a magnetic field

A number of excellent frequency stan-
dards are based on the hyperfine sep-
aration of the ground state of atoms
and ions (see table 1). This splitting is
due to the coupling between the mag-
netic moment associated with the total
spin J of the electron shell and the nu-
clear spin I. In 133Cs e.g. the coupling
of I = 7/2 � and J=1/2 � leads to the
F = I + J = 4 and F = I − J = 3
states which split in the magnetic field
(Fig.1). The Cs clock uses the tran-
sition with the smallest sensitivity to
magnetic fields, i.e. between the F = 4,mF = 0 and F = 3,mF = 0 states with
a quadratic dependence of ∆ν ∼= 0.0427×B2 Hz/(µ T )2.

3.1 Cs Beam Machine

Most Cs atomic clocks operated today use Cs atoms in an atomic beam inside
a high vacuum chamber. Their principle (Fig.2) does not differ much from the
ancestor of the Cs atomic clocks developed at the National Physical Labora-
tory, England [22]. The Cs atoms effusing from an oven kept at a temperature
of about 450 K have a most probable velocity of about 250 m/s. Due to the
small energy separation between the F = 3 and F = 4 states both levels are in
fact almost equally populated in the thermal beam. Detection of the transitions
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between these levels induced by an external oscillator can be performed with an
optimal signal–to–noise ratio in a large sample of atoms only if most atoms are
initially in the same state. It is therefore necessary either to prepare all atoms in
the same state or to select atoms from one state. The latter procedure is applied
in conventional Cs atomic beam machines in which a magnetic polarizer with
an inhomogeneous magnetic field realized by a two–, four–, or six–pole magnet
is used to deflect the atoms according to their magnetic moment. Only atoms
in the state F = 4 enter the first interaction zone of the Ramsey cavity fed
by the rf derived from a voltage controlled quartz crystal oscillator (VCXO).
The interaction with the rf field transfers the atom into a coherent superposi-
tion between the F = 4 and the F = 3 state. The temporal evolution of the
quantum mechanical state of the Cs atom can be thought of as an oscillation
with a frequency corresponding to the energy difference of these states. After the
interaction of the atom with the field in the second zone of the Ramsey cavity
the probability to find the atom in the F = 4 state or in the F=3 state depends
on the external rf field being in phase or out of phase with the atomic oscillator
at the second interaction zone. Hence, the number of atoms in either the F = 4
or in the F = 3 state oscillates as a function of the frequency of the external
oscillator thereby leading to the Ramsey interference structure [23] similar to
the ones shown later (Fig.4 and Fig.5). In Fig.2 the magnetic analyzer deflects
the atoms in the F=3 state into the detector. The detector signal is used to
stabilize the frequency of the VCXO to the atomic transition frequency. The
largest contributions to the frequency uncertainties in these clocks results from
cavity phase shifts due to the imperfect field distribution in the cavity and from
inhomogeneities of the magnetic C–field. As a representative of the state–of–the
art primary beam–machine clocks, PTB’s CS1 has a stability of 5 ×10−12√τ/s
and an accuracy of 7 ×10−15 [24].

3.2 Optically Pumped Cs Clocks

The short–term stability of the Cs beam machines is limited by the shot noise of
the number n of atoms in the beam since the signal–to–noise ratio (2) increases
with

√
n. The stability can be increased if all atoms can be prepared in the

desired state rather than selecting one particular state with only 1/16 of the
total number of atoms leaving the oven (see Fig.1). Optical pumping techniques
can be utilized to accumulate atoms in the desired state. Similarly, the detection
of the excited atoms can be performed by laser induced optical fluorescence.
Several Cs beam machines based on these principles have been designed and
operated (see e.g. [25–28]). A stability of about 1 ×10−12√τ/s [29,28] and an
accuracy of 1 ×10−14 has been reported [28] for these types of clocks.

3.3 Atomic Fountain Clocks

Laser cooling of Cs atoms can lead to very low temperatures of about 2 µK
corresponding to velocities of a few centimeters per second that might allow in-
teraction times of seconds and more. The utilization of such a long interaction
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time meets with difficulties, because gravitation accelerates the atoms and, in
contrast to ions to be discussed in more detail in Sect. 3.4 and Sect. 4.1, up to
now no means have been found to keep neutral atoms at rest in the gravitational
field without seriously perturbing the resonance frequency. Applying Ramsey’s
separated–field technique to ballistically free flying atoms leads to the develop-
ment of a of a fountain clock in which interaction times of about a second can
be realized. In an atomic fountain a cloud of cold atoms is launched vertically
through an interaction region with a velocity of a few meters per second. The
gravitational acceleration g forces the atoms to slow down and fall back thereby
passing the same interaction zone a second time. Similarly, as in the Cs atomic
clock with a thermal beam, the resulting resonance feature displays a Ramsey
interference structure with a resolution that is determined by the time T be-
tween the two interactions. This time is calculated from the time T ′ necessary
for the atoms to climb up to the apogee and the same time to fall down

T = 2T ′ = 2

√
2H
g

. (3)

For a realistic apparatus with a height between the resonator and the apogee of
H= 1 m this time is T = 0.9 s and the necessary starting velocity of the atoms
is v =

√
2gH = 4.5 m/s. The low velocities of the atoms in the atomic cloud are

prerequisites for an efficient operation of such an atomic fountain inasmuch as
the number of atoms returning into the microwave cavity after the ballistic

Fig. 2. Schematics of a Cs atomic clock. The field lines of the homogeneous magnetic
C–field are perpendicular to the paper plane. The states E1 and E2 correspond to all
F = 3 states and the F = 4,mF = −4 state and to the F = 4,−3 ≤ mF ≤ +4 states,
respectively (see Fig. 1).
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Fig. 3. Cs atomic fountain clock.

flight depends on the transverse ve-
locity. From a cloud of caesium
atoms with a temperature T =
2 µK about 10% of the atoms find
their way through the 1 cm hole of
the resonator in contrast to about
0.2% that would enter the same re-
gion if the sample was cooled only
to the Doppler limit of 125 µK
[30]. The first successful predeces-
sor of an fountain experiment us-
ing laser cooled sodium atoms in
a pulsed rf cavity demonstrated a
line width of 2 Hz [31]. Following
the realization of the first fountain
clocks [32,33] it has been realized
soon that collisions between the
cold atoms may limit the achiev-
able accuracy in a Cs fountain [17].
It is now known that the associated
shifts are much less pronounced in
rubidium [34,35]. Now a variety of

atomic fountains using Cs or Rb atoms are operated or under investigation for
atomic clocks in several institutions [36–41,34,35,42]. Even though these real-
izations differ somewhat in their design, each apparatus uses three sections (see
Fig.3), a trapping and cooling section, an excitation section containing the mi-
crowave cavity and the zone for the ballistical flight and a section for the detec-
tion. The cloud of cold atoms is often prepared from a thermal vapour fed by a
Cs reservoir at a base pressure of about typically 10−6 Pa. In a MOT [12] about
107 Cs atoms are collected and further cooled in an optical molasses to about
2 µK and sometimes further cooled by means of Raman cooling techniques [43].

In the next step the atoms have to be launched upward without increasing
their temperature. This is conveniently done in a moving molassis where the
frequency ν1 of the downward pointing vertical laser beam is red detuned by δν
and the frequency ν2 of the upward pointing beam is blue detuned by δν with
respect to the original frequency ν. The corresponding phase front e.g. the ones
for δωt+ kz = 2πδνt+2πz/λ = 0 move with the velocity v = z/t upwards. The
atoms are now exposed to this “walking wave” with velocity

v = λδν (4)

and are instantly laser cooled into equilibrium with the walking wave and hence
are moving up with the velocity given in (4). When the vertical beams are
switched off the atoms follow the trajectories of a free ballistic flight. The long
flight time between the two interactions leads to Ramsey spectra with high
resolution (Figs. 4 and 5).



Clocks for L e n g t h  a n d  T i m e  M e a s u r e m e n t  355 

v - v ,  - 
F i g .  4 .  M e a s u r e d  p r o b a b i l i t y  P t o  e x c i t e  F i g .  5 .  E x c e r p t  of t h e  h i g h  r e s o l u t i o n  
C s  a t o m s  i n  t h e  f o u n t a i n  clock of P T B  w i t h  R a m s e y  s p e c t r u m  s i m i l a r  t o  F i g . 4  w i t h  
low r e s o l u t i o n .  a  h e i g h t  of t h e  a t o m i c  f o u n t a i n  of a b o u t  

0.6 m .  

Recently, a  s t a b i l i t y  of 5  X ~ O - ' ~ ( T / S ) - ' / ~  [44] a n d  a c c u r a c y  of 1-2 x  lo-'" 
[45,36] h a s  been r e p o r t e d  for C s  f o u n t a i n  clocks w i t h  smaller u n c e r t a i n t i e s  a n -  
t i c i p a t e d .  

3 . 4  Clocks B a s e d  o n  I o n  Traps 

To keep microscopic p a r t i c l e s  a t  r e s t  a t  a  fixed p o s i t i o n  in space a  s t r o n g  b i n d i n g  
force p o i n t i n g  t o  t h i s  p o i n t  is r e q u i r e d .  Due t o  t h e  weak i n t e r a c t i o n  of n e u t r a l  
a t o m s  or molecules w i t h  e l e c t r i c  a n d  m a g n e t i c  fields, s t r o n g  fields or field gra- 
d i e n t s  a r e  r e q u i r e d  which m a y  seriously p e r t u r b  t h e  a t o m i c  e n e r g y  levels. For 
ionized p a r t i c l e s ,  however, much smaller fields c a n  b e  used for confinement in 
so-called ion t r a p s .  T h e r e  a r e  several a d v a n t a g e s  of ion t r a p s  when used for fre- 
q u e n c y  s t a n d a r d s  which will b e  briefly a d d r e s s e d  h e r e .  F i r s t ,  s t o r a g e  t i m e s  of 
d a y s  a n d  more allow t o  p r o b e  ultra-narrow lines w i t h  v i r t u a l l y  n o  b r o a d e n i n g  
d u e  t o  l i m i t e d  i n t e r a c t i o n  t i m e s .  Second, t h e  c o n c e n t r a t i o n  of t h e  a b s o r b e r s  i n t o  
a  small volume allows effective a p p l i c a t i o n  of t h e  m e t h o d s  of laser cooling a n d  
d e t e c t i o n  of t h e  i n d u c e d  signals o r i g i n a t i n g  from a  single s p o t .  T h e  r e d u c t i o n  of 
t h e  velocity a n d  t h e  confinement t o  regions s m a l l e r  t h a n  t h e  wavelength of t h e  
p r o b i n g  r a d i a t i o n  (Dicke regime) allows t h e  r e d u c t i o n  of t h e  Doppler effect i n  all 
o r d e r s .  According t o  Dicke [46] t h e  first-order Doppler effect of a  single-photon 
t r a n s i t i o n  of wavelength X c a n  b e  s u p p r e s s e d  if t h e  a b s o r b e r  is kept in a  r a n g e  
smaller t h a n  X/2. T h i r d ,  t h e  use of ultra-high v a c u u m  reduces p e r t u r b a t i o n s  
from t h e  coupling t o  t h e  e n v i r o n m e n t .  F o u r t h ,  t h e  s t r o n g  i n t e r a c t i o n  w i t h  o t h e r  
ions c a n  b e  avoided by t h e  use of a  "mono-ion oscillator a s  p o t e n t i a l  u l t i m a t e  
laser frequency s t a n d a r d "  a s  h a s  b e e n  proposed by Dehmelt a l r e a d y  i n  1982 [ 4 7 ] .  
T h e  use of ion t r a p s  in frequency s t a n d a r d s  h a s  been t h e  s u b j e c t  of a  n u m b e r  of 
recent reviews (see e .  g .  [48-511). 

I n  a n  ion t r a p  a n  e l e c t r i c  field E ( r )  c a n  b e  used t h a t  leads t o  a  n e t  force 
o n  a n  ion w i t h  charge e a n d  mass m p o i n t i n g  t o  t h e  c e n t e r  of t h e  t r a p  a t  a n y  
s p a c e  p o i n t  inside t h e  t r a p p i n g  volume. T h e  c o r r e s p o n d i n g  p o t e n t i a l  @ ( x ,  y ,  z )  
h a s  a  p a r a b o l i c  s h a p e  a n d  m a y  b e  r e p r e s e n t e d  by @ oc ( a x 2  + b y 2  + c z 2 ) .  For t h e  
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constants determining this potential the condition a+ b+ c = 0 can be derived
from the Laplace equation. This condition is e.g. fulfilled by the two particular
solutions a = 1, b = −1, c = 0 corresponding to a linear quadrupole trap and
a = b = 1, c = −2 representing the three–dimensional Paul trap [52].

The two–dimensional quadrupole potential can be generated by a set of four
hyperbolic electrodes where the potentials of adjacent electrodes change polari-
ties. This case can be approximated by four rods (see Fig.6 b). In the case of a
static field in the radial direction a particle of electric charge +e will be repelled
from positively charged electrodes experiencing a repulsive force towards the
center at r = 0. According to the linear dependence of the field strength E on
the coordinate similar to Hooke’s law we expect the ion to perform a harmonic
oscillation in this direction. Along the orthogonal direction, however, the ion is
accelerated towards the nearest negative electrode. To confine the ion for both
directions, in the rf or Paul trap [52] the potential of both pairs of electrodes is
alternated periodically

Φ(x, y, t) =
Uac

2r20
(x2 − y2) cos(ωt) . (5)

The alternating potential leads under certain conditions [53] to a time–averaged
net force that attracts the ions towards the nodal line. In Fig.6 b) two additional
ring electrodes confine the ions in the axial direction.

In a three dimensional Paul trap the potential has the form

Φ(x, y, z, t) =
Udc + Vac cos(ωt)

r20 + 2z20
(x2 + y2 − z2) . (6)

A dc voltage Udc is added in general to the alternating rf voltage Vac with a
driving frequency ν = ω/2π to vary the ratio between the restoring forces in
axial and radial direction. The positive sign in (6) leads to a hyperbolic surface
with rotational symmetry around the z− axis generated by a ring electrode of
an inner radius r0 (Fig.6a). The negative sign results in two branches of the
hyperbola of revolution separated by the distance 2z0 =

√
2r0 also exhibiting

rotational symmetry with respect to the z− axis.

Fig. 6. Radio frequency ion traps a) Paul trap with hyperbolic end caps and a ring
electrode b) linear trap.
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Inside the trap the trajectory of the ion is a superposition of a driven motion
at the frequency ω referred to as the micromotion and a low–frequency motion
called the secular motion.

Ion traps of both kinds shown in Fig.6 have been used with many species
for frequency standards (for an overview see e.g. [50]). Using rf transitions, most
work has probably been done using mercury and ytterbium ions. The 12.6 GHz
clock transition in a cloud of about 50 000 171Yb+ ions in a hyperbolic Paul
trap has been utilized [18,54]. The ions were cooled with a buffer gas and the
frequency has been determined by extrapolation to a vanishing relativistic, colli-
sional and Stark effect shift with a relative uncertainty of 7 ×10−13. The largest
contribution to the systematic uncertainty resulted from the temperature of the
ions of about 1800 K. Fisk et al [20] used two linear Paul traps and demonstrated
a relative uncertainty of 2 ×10−13. The Allan standard deviation as a measure
of the frequency instability was σy(2, τ) = 4.7× 10−14(τ/s)−1/2.

The 40.5 GHz clock transition in 199Hg has been investigated and utilized
as a frequency standard by several groups (see e.g. [21,55–57]). Devices with
about 2 ×106 ions cooled with He buffer gas have been designed by Cutler
et al [56] and the frequency was measured with a relative uncertainty of 2.5
×10−13. A mercury linear ion trap standard operated at the JPL gave a stability
of σy(2, τ) = 6.5 × 10−14(τ/s)−1/2 [57]. Slightly lower stability of σy(2, τ) =
3.3×10−13(τ/s)−1/2 but excellent low relative uncertainty from systematic effects
of only 3.4 parts in 1015 was reported for a few ions in a cryogenic linear trap
of the National Institute of Standards and Technology [21].

4 Optical Clocks

The major advantage of frequency standards operating in the optical rather than
in the rf range is based on their high frequencies. With the same interaction
time i.e. with the same resolved line width the quality factor Q can be higher by
several orders of magnitude. The short wavelength of the radiation in the optical
domain, however, makes it difficult to keep the absorbers in the Dicke regime.

4.1 Clocks Based on Ion Traps

Ion traps allow to confine a single atom in the Dicke regime. For highest accuracy
the number of trapped ions has to be restricted to a single ion in a hyperbolic
Paul trap or to a few ions in a linear Paul trap since the ions have to be confined
at the field free center or nodal line of the traps. The sensitive detection of the
transition of an absorber consisting of a single ion is achieved by the method
of electron shelving [47] where a strong transition shares the ground state with
the weak clock transition. Suppose, that the fluorescence radiation from the
strong transition is monitored. The transition of the ion into the long lived state
immediately is identified by the disappearance of the fluorescence radiation from
the strong transition which persists as long as the electron is shelved in the long–
lived state. This scheme allows signal detection with unity detection efficiency.
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Fig. 7. a) Partial energy diagram of the Yb ion b) Spectrum of the transition of a
single Yb ion in a Paul trap as measured by quantum jumps [66]

There is a number of suitable candidate ions for optical frequency standards
[58] including 88Sr+ [59,60] at 674 nm, 115In+ [61–63] at 236.5 nm, 199Hg+ [64]
at 282 nm or 171Yb+. Ytterbium has several transitions at 411 nm [65], 435 nm
[66], or 467 nm [67] (see Fig.7 a). The strong transition at 369 nm is used for
laser cooling and detection. The line at 467 nm has a natural line width of 5
×10−10 Hz corresponding to Q ∼= 1024 [67], but due to its low transition rate it
has been detected but not utilized yet. The 435 nm transition has been recorded
with a line width of 80 Hz [66] by detecting the quantum jumps (see Fig.7 b)
where the carrier together with the sidebands due to the oscillation frequencies
of the ion in the trap in radial (r1, r2) and vertical (z) direction can be identified.
Similar line widths have been observed with the mercury ion and it is expected
that optical frequency standards based on single ions soon will reach relative
uncertainties at 10−15.

4.2 Optical Frequency Standards Based on Neutral Atoms

From the proposed optical frequency standards based on neutral atoms (see e.g
[68,69]) hydrogen [70], xenon [71,72] and the alkaline earth metals have received
the most attention. The narrow intercombination line of the latter ones was
utilized e.g. in Mg [73], Ca [74,75], or Sr [76]. Here the recent work of an optical
frequency standard based on 40Ca is reported.

4.3 Expanding Cloud of Cold Ballistic Ca Atoms

Ca atoms from the low velocity tail of the Boltzmann distribution (vprob ∼= 600
m/s, Toven ∼= 900 K) are cooled and trapped in a MOT [12] (see Fig.8). The
Ca intercombination line at λ = 657 nm is interrogated by the radiation from
a high–resolution dye laser spectrometer [77] or a diode laser spectrometer [78].
The laser pulses for the excitation are generated by acousto–optic modulators
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Fig. 8. Experimental setup for an optical Ca standard.

(AOMs) (Fig.8) used as “light switches”. The radiation at λ ∼= 423 nm used
to cool, deflect, and trap the Ca atoms in the MOT are produced either by a
dye laser or a frequency doubled diode laser system. Up to 107 atoms are loaded
during about twenty milliseconds. To avoid systematic frequency shifts due to the
Zeeman effect of the magnetic field of the MOT and light shifts due to the 423 nm
radiation, both the magnetic field and the light of the trapping laser have to be
shut off before interrogating the Ca atoms. The atomic cloud expands according
to the root–mean–square (rms) velocity of the ballistic atoms of vrms

∼= 1 m/s. In
order to achieve high spectral resolution combined with a good signal–to–noise
ratio (S/N), the method of separated field excitation (optical Ramsey excitation)
is applied. Short pulses of 1 µs duration are used to excite a significant part of
the cold ensemble of atoms. The corresponding time sequence consisted of atom
trapping (t1 ∼= 15 ms), turning off the trapping fields (t2 ∼= 0.5 ms), separated–
field excitation, and detection (t4 ∼= 0.5 ms). If the laser frequency is tuned close
to the resonance, the fluorescence intensity contains a contribution which varies
with the cosine of the laser detuning (ν − νCa) times 2πt (Fig.9). In contrast
to rf Ramsey excitation, in the optical regime the atoms are not in the Dicke

Fig. 9. Optical Ramsey resonances excited in an expanding cloud of Ca atoms released
from a MOT .
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regime. Hence, three [79] or four [80] interaction zones have to be used to excite
Doppler–free optical Ramsey resonances. Bordé has shown that the resonance
structures can be interpreted as atom interferences generated by the excitation
with separated fields [81]. The narrowest fringe width obtained with the Ca
standard was below 400 Hz. PTB operates two different systems [74,82] allowing
one to compare the transition frequencies of the intercombination line measured
at two independent ensembles of Ca atoms and to check the reproducibility of the
frequency delivered by such a Ca standard. Arelative uncertainty below 10−13

was derived and it was shown that for an optimized system a relative uncertainty
of about 10−15 [82] can be expected. A stability of 1.3 ×10−14(τ/s)−1/2 was
obtained for a similar system at NIST [75].

5 Measurement of Optical Frequencies

A frequency stabilized laser only represents an optical frequency standard if its
frequency is compared directly or indirectly with the frequency of the primary
standard of time and frequency i.e. with the Cs atomic clock. This comparison
meets with some difficulties due to the fact that both frequencies differ by al-
most five orders of magnitudes. Therefore, up to now not many frequencies of
optical frequency standards were measured. Some recent measurements include
the optical Ca frequency standard [83,74], optical transitions in atomic hydrogen
[84,85], the Sr+ ion standard [60], or the In+ ion standard [63]. As an example
of a so–called frequency chain, PTB’s phase–coherent frequency chain from the
Cs atomic clock to the optical regime is shown in Fig.10. This chain is described
in more detail elsewhere [83] and it suffices to recall that it basically applies
the method of harmonic mixing thereby connecting the Ca standard via various
intermediate oscillators (diode laser, colour center laser, CO2 lasers, methanol
laser, backward wave oscillator, Gunn oscillator, and H–maser) to the Cs clock.
As an example, consider the uppermost stage of Fig.10. The frequency of a diode
laser is tuned near half of the frequency of the Ca stabilized laser. The radiation
of the diode laser is frequency doubled in a non–linear crystal and the beat note
between this radiation and the radiation of the Ca stabilized laser is monitored
with a photo diode. If the signal of the photo diode is phase locked using a
Phase Locked Loop (PLL) the frequency ratio of both lasers is kept constant
and can be used to determine the frequency of the Ca stabilized laser, provided
that the frequency of the diode laser and the frequency of the PLL are known.
In the same way, the frequency ratios of all other stages can be related. Such a
frequency chain allows a phase–coherent optical frequency measurement which,
in principle, does not contribute to the uncertainty of the measured frequency
value provided, cycle slips can be excluded in each multiplication step.

Several frequency measurements during more than two years have been per-
formed at PTB using two different MOTs, different resolutions, and different
stabilization schemes. The weighted mean of all frequency measurements up to
now is νCa = 455 986 240 494.13 (12) kHz. This uncertainty makes the Ca sta-
bilized laser one of the most accurate optical frequency standards in the visible,
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Fig. 10. Frequency measurement chain of PTB.
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Table 2. Radiations recommended by the CIPM for the realization of the meter [86]

Atom or Transition Wavelength Rel. Standard

Molecule ( µ m) Uncertainty

1H 1S – 2S 0.243 134 624 6260 8.5 ×10−13

127I2 32 – 0 R(56), a10 0.532 245 03614 7.0 ×10−11

127I2 11 – 5, R(127), a13 or (i) 0.632 991 398 22 2.5 ×10−11

40Ca 3P1 – 1S0; ∆mJ = 0 0.657 459 439 291 7 6.0 ×10−13

88Sr+ 52S1/2 – 42D5/2 0.674 025 590 95 1.3 ×10−10

CH4 7 – 6, ν3, P(7), F
(2)
2 3.392 231 397 327 3.0 ×10−12

Fig. 11. Progress in the accuracy of the re-
alization of the length unit during the past
in the International System of Units (SI)
according to the definitions of the CGPM
[89,90] and the recommendations of the
CIPM [91,92,86].

today. Consequently, this standard has
been recommended recently by the
CIPM [86] for the realization of the
meter with the lowest uncertainty. The
instability of a frequency measurement
including the stabilities of the opti-
cal Ca standard and of the hydro-
gen maser was shown to decrease with
1/
√
τ for integration times between τ

= 1 s and τ = 1000 s. It reaches its
flicker floor at approximately 10−14.
Frequency measurement chains used
so far like the one of Fig. 10 are ex-
pected to be replaced by chains that
use less oscillators. The progress of
new chains based on optical frequency
interval divider chains [84], optical fre-
quency comb generators [87] or mode–
locked lasers [88] is expected to allow
the measurement of optical frequen-
cies with less effort and may eventu-
ally lead to optical clocks competitive
or superior to the best rf clocks.

6 Optical Frequency Standards for the Realization
of the Meter

Optical frequency standards generate optical reference frequencies which are
required in precision laser spectroscopy, optical communication and in length
and frequency metrology. From the optical frequency standards developed at
various frequencies in many laboratories the International Committee of Weights
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and Measures (CIPM) has evaluated and selected several radiations of such
stabilized lasers and recommends them as references for the realization of the
meter and for precision spectroscopy (see Table 2, [91,92,86]). Their wavelengths
presently range from the near Ultra-Violet (UV) (243 nm) to the Infra-Red (IR)
(10.3 µ m). The advantage of frequency standards for the realization of the meter
is visualized from Fig.11. The pace of the development of optical frequency
standards and clocks with reduced uncertainties does not seem to slow down
as can be concluded from the fact that the uncertainties of the optical Sr [60]
and the hydrogen 1S-2S frequency or of the Ca stabilized laser [74] already are
considerably lower than given in Table 2.

Acknowledgements

The author is very grateful to his colleagues Drs. J. Helmcke, U. Sterr, H.
Schnatz, A. Bauch, S. Weyers and Chr. Tamm for many fruitful discussions
and the permission to reproduce their figures. The hospitality of the Heraeus
Foundation is gratefully acknowledged.

References

1. Bureau International des Poids et Mesures (1998) Le système international d’unités
(SI). Pavillon de Breteuil, F-92310 Sèvres, France, http://www.bipm.fr/pdf/si-
brochure.pdf

2. Bureau International des Poids et Mesures (Ed.) (1967/1968) Comptes Rendus des
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Abstract. SpaceTime is a mission concept developed to test the Equivalence Prin-
ciple. The mission is based on a clock experiment that will search for a violation of
the Equivalence Principle through the observation of a variation of the fine struc-
ture constant, α. A spatio–temporal variation of α is expected in some string theories
aimed at unifying gravity with other forces in nature. SpaceTime uses a special tri–
clock instrument on a spacecraft which approaches the sun to within four solar radii.
The instrument consists of three trapped ion clocks based on mercury, cadmium, and
ytterbium ions, in the same environment. This configuration allows for a differential
measurement of the frequency of the clocks and the cancellation of perturbations com-
mon to the three. The observation of any frequency drift between each of the clocks, as
the tri–clock instrument approaches the sun, signals the existence of a scalar partner
to the tensor gravity. Some relevant details of the mission design are discussed in the
paper.

1 Introduction

The unification of gravity with other forces of nature is arguably the most ur-
gent problem in theoretical physics. Yet the unification program, initiated by
Albert Einstein shortly after his introduction of general relativity, has proved to
be a difficult challenge and remains an open problem today. The lack of a clear
path to unification is even more frustrating since the two underlying theories,
the quantum field theory and general relativity, have been separately immensely
successful. Quantum field theory is widely regarded as the most successful the-
ory in physics, capable of reproducing details of interaction for all matter. The
predictions of this theory have been upheld by the experimental scrutiny in nu-
merous tests. General relativity, on the other hand, has widened our picture of
reality, and helped us consider the birth of the Universe, the cosmological evo-
lution, and exotic objects such as the black hole. In the past eighty years since
its introduction, this theory has also withstood the most exacting scrutiny that
experimental physics has been able to devise [1]. Experimental tests and obser-
vations performed in vastly different conditions, ranging from the weak gravity
of solar system, to the strong fields of binary pulsars, have all failed to reveal
any violation of general relativity. In fact the failure of these very elaborate ex-
periments with their impressive sensitivity in finding any violation has branded
them with the label “Null Experiments”, prompting the cynics to declare these
tests as measuring zero with ever higher accuracy!
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Yet the impetus behind devising other, more sensitive, tests of general rela-
tivity is the unification, itself. Amongst promising candidates for the unification
program, string theories stand out since they evidently have the ingredients nec-
essary to accomplish the task. All viable string theories, nevertheless, require
a massless scalar field partner to the tensor gravity, in contradiction to Ein-
stein’s Equivalence Principle (EEP), the pillar on which general relativity and
other metric theories of gravity stand. This reality has led to a widespread belief
among theorists that EEP must be violated, and experiments with requisite sen-
sitivity can detect such violation. Thus the experimental tests of EEP now hold
the promise of uncovering the range of validity of general relativity. And since
some string theories make specific predictions regarding the nature and strength
of the EEP violating scalar fields [2], sensitive tests of the EEP also stand to
identify viable string theories.

That a violation of EEP will signal evidence for new physics extends beyond
the promise of the unified fields; it directly confronts some of the most pressing
questions in cosmology. There have been a number of recent suggestions that
the so called “cosmological constant problem” may be linked to the presence
of a scalar (quintessence) field which could be manifested by a violation of the
Equivalence Principle [3].

Among various approaches to test general relativity, atomic clock tests are
particularly significant since they represent a direct test of the coupling of gravity
to the electromagnetic field. In a recent paper [4] we have extended the ability
of atomic clocks in testing general relativity to a local test of the variation of the
fine structure constant, α. A variation of the fine structure constant will signal a
violation of the EEP [1]. On the other hand, a spatiotemporal variation of α, the
coupling constant of the electromagnetic field, on the Hubble time scale is also
implied by the dilaton and other scalar fields (moduli), which are the necessary
partners of the tensor gravity field in string theories [5]. So a clock comparison
test can fulfill the promise of aiding the unification program by pointing to the
viability, or not, of string theories predicting a variation of fundamental coupling
constants.

A clock test near the sun is particularly suitable to test the variation of α,
since it can do so with a sensitivity far beyond that achievable on or near Earth.
Finally, clock tests are also useful as a needed complement to “free fall” tests
of general relativity. In the latter type of tests, the specifics of the coupling of
gravity to any, or various, matter fields must be inferred from apportioning any
observed difference in free fall of two, or more, test masses to various types of
(mass) energy. Since the coupling of the dilaton field to the Coulomb energy
dominates, when combined with clock tests (which are strictly based on atomic
transitions driven only by the electromagnetic field) free fall tests will offer a
vastly clearer picture of the details of the coupling of gravity to matter fields.

In the following section we will motivate a mission concept to fly a special
tri–clock to within four solar radii of the sun in search for the observation of a
varying α. This mission is referred to as SpaceTime. We will describe the tri–
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clock instrument in section 3, and the mission design in section 4. The conclusions
will be given in section 5.

2 Motivation

Atomic clocks are based on electronic transitions in neutral or ionized atoms
which result in the emission or absorption of a photon. The frequency of the
photon is fixed by the difference in the energy levels that the photon connects,
and the inverse of the frequency determines a time interval. This simple relation
provides the means for a sensitive test of any variability in the fine structure
constant, owing to the electromagnetic nature of the energy in the electronic
structure of the atom.

A change in α with time can be detected by comparing the frequency of
two clocks based on dissimilar atoms, and through measuring the frequency
drift between them. In the case of clocks based on hyperfine transitions, the
α dependence of the hyperfine energy in each atom differs, depending on the
atomic number, Z. This arises from the presence of a relativistic term in the
hyperfine energy splitting, the so called Casimir correction factor F (Zα), which
accounts for the interaction between the magnetic field of the nucleus and that
of the valence electron in the finite nuclear volume. It has been shown [4] that a
time variation of α may be related to the variation in the transition frequency
of atoms 1 and 2, on which two clocks are based, via,

d

dt
ln

A1

A2
= [LdF (αZ1)− LdF (αZ2)]

1
α

dα

dt
. (1)

Here Ai (i = 1, 2) is related to the hyperfine transition frequency, and LdF (Zi)
represents the sensitivity of the atom with a nuclear charge Zi to the time
variation of α.

The difference in the sensitivity of various hyperfine clocks to the time varia-
tion of the fine structure constant naturally points to experiments where clocks
based on different atoms are compared for a time, and their relative frequency
drift is measured to obtain α̇. Such a test was previously performed by compar-
ing a mercury ion clock and a hydrogen maser for a period of about six months;
it provided an upper limit for α̇/α to be 3.7× 10−14/yr.

There are two ways to improve the current limit on α variation set with clocks:
Improved clock stability or longer measurement intervals for clock comparison.
The first approach is possible, but based on the best available clock technologies,
is limited to about one order of magnitude improvement. The second approach is
difficult to implement, since the results improve with the observation time only
linearly. Furthermore, the longer the observation time with separate clocks, the
harder it is to exclude any environmentally caused frequency drift from spoiling
the data.

An equivalent approach to testing for a time varying fine structure ”constant”
is a search for a spatial variation of α in a strong gravitational potential. The
presence of any new long range force based on a scalar field will result in an
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additional frequency shift in the clocks, the value of which will depend on the
nuclear charge of the atoms of each clock. Since 98 % of the mass of the solar
system resides in the sun, comparison of the frequency of clocks near the sun
provides for the highest achievable sensitivity for such a test. At four solar radii,
the sun’s gravitational potential (divided by c2, where c is the speed of light) is
5×10−7, so clocks accurate to about 10−16 will enable measurement of differential
frequency shifts at the level of 10−10 of general relativity’s universal prediction.

This notion is the basis for the proposed SpaceTime mission, which attempts
to combine the opportunity of the increased sensitivity at the proximity of Sun
with a unique “tri–clock”, to provide for an unambiguous test of α variation.
The sensitivity of such an experiment may be compared with any test of time
variation in α in the following manner. The variation of α with the variation of
the gravitational potential may be written as:

δα

α
= S

δU

c2
, (2)

where S is the sensitivity of the experiment (10−10 in the scenario suggested
above) and U is the Newtonian potential. Taking the time derivative of the
above equation leads to:

α̇

α
= S

U̇

c2
. (3)

The time variation of U , for a closed universe, is related to the Hubble constant
H by U̇/c2 - H. Thus the equivalent sensitivity of SpaceTime to the detection
of any time variation in α is:

α̇

α
= S ×H - 10−20/year (4)

for H less than 10−10.
This sensitivity should be contrasted to the limit of α̇/α ≤ 10−16 placed by

comparing the ratio of isotopes 147 and 149 of Sumarium in the natural uranium
fission reactor in the Oklo mine in Gabon [6]. It also exceeds the recent results of
the observational astronomy with the tantalizing hint of a possible α variation,
[7] by four orders of magnitude.

3 The Tri–clock Instrument

The tri–clock instrument design is key to the sensitivity of SpaceTime to an
α variation, and is based on the trapped ion frequency standards of the JPL.
The interest in ion traps as the basis for atomic clocks stems from the general
requirements for achieving high performance. The achievable stability of atomic
clocks depends on the energy level structure of the active atom, as well as the
environment in which the atom undergoes the clock transition. The first condi-
tion determines the achievable stability inherent to the atom via the sensitivity
of the atomic transition to the environmental perturbations. The second deter-
mines the degree to which the environmental perturbations can be reduced with
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respect to the atomic energy level sensitivity. The trapped ion frequency stan-
dard fulfills both these conditions, since ions with inherently high insensitivity to
environmental changes are readily confined in traps which provide an essentially
benign environment. The relatively large hyperfine level separation of ions, com-
pared to neutral atoms, make them inherently less sensitive to environmental
perturbations, such as the ambient magnetic fields

Research in the past two decades in the field of trapped ion clocks has already
produced impressive results with the development of a standard with stability
corresponding to 7× 10−14/

√
τ [8], and has demonstrated the highest measured

stability for averaging intervals longer than 105 s. A brief description of the
operation of the trapped ion frequency standard is given below, for completeness.
The interested reader is referred to the literature [9–11] for more information.

In trapped ion clocks, ions of the atomic species of interest are confined in
an electrodynamic trap. The trap may be constructed of electrodes of various
geometry. In the most widely used trap type, four rods arranged in a cylindrical
geometry form the electrodes [9]. A radio frequency (rf) voltage applied to the
trap keeps the neighboring electrodes at opposite potentials at any instant of
time. Ions are created in the trap by the collision of electrons generated from
a hot filament on a background vapor of the atom of interest. Once generated
within the trap, ions experience the quadrupolar rf potential created by the
electrodes. This quadrupolar potential is zero along the axis of the trap, and
increases as ions get closer to the electrodes. Ions experience a force resulting
from the interaction with the field which varies in direction as the field oscillates.
If the trap rf frequency is high enough, it results in a net force directed towards
the trap axis (the zero field position) at all times, and ions are thus trapped.

Once trapped, the population of the two hyperfine levels of the ion are nearly
the same at room temperature, as required by the Boltzman distribution. This
implies that ions must be prepared in the desired state, from which the clock
transition takes place. The state preparation is accomplished by optical pump-
ing, whereby ground state ions are first pumped from one of the ground state
hyperfine sublevels (typically the highest lying in energy) to the first electronic
excited state, with light from a resonance lamp or a laser. Upon their decay,
excited atoms make a transition to all hyperfine sublevels of the ground state.
Since the lifetime of the excited state is short (only a few nanoseconds), the
applied light depletes the upper hyperfine sublevel, while increasing the popu-
lation of the lower sublevels. When the optical pumping is complete, and the
upper hyperfine sublevel is completely empty, the atom is prepared for the clock
transition which can be induced from one of the lower sublevels with population,
to an empty sublevel.

The next step in the operation of the clock entails inducing an interaction be-
tween the atoms, and the microwave radiation from a local oscillator (LO) source
at the clock frequency. It is this cycle in the clock operation which requires that
the ions be shielded from any interaction with the environment. Since hyperfine
transitions are due to magnetic dipole interactions between the electron and the
applied field, shielding from external magnetic fields is of paramount importance.
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For the same reason, it is practically more advantageous to apply a small, yet
fixed, magnetic field to the trap, while shielding it from the outside magnetic
field variations.

If the frequency of the LO exactly matches the clock transition, the depleted
upper hyperfine sublevel becomes populated again, and can be used to scatter
photons from the resonance lamp again. Otherwise, the clock transition does not
populate the upper sublevel, and the atoms remain transparent to the light from
the resonance lamp. This information (scattered photons from the ion) is used in
a feedback loop that controls the frequency of the LO to ensure its coincidence
with the clock transition in the ion. The output of the LO, disciplined to the
atomic transition, constitutes the clock output.

There is one more important point about the LO which should be considered
here. While the output of the LO is disciplined to the atomic transition, the LO is
free running (i.e. without feedback control) for the time intervals corresponding
to ion generation, optical pumping, clock transition, and clock interrogation
cycles. Most of these cycles are short, on the order of a second long, but the
microwave transition must be long, since the inverse of its length determines the
width of the atomic line. In high performance clocks, the atomic line is as narrow
as practical since it directly determines the achievable stability. This length of
the microwave transition cycle typically ranges from about ten seconds to as
long as a minute. A major obstacle in the realization of ultra–high performance
atomic clocks, as required in precision measurements, is the availability of a LO
whose noise during the free running interval is low. It has been shown [12] that
the noise of the LO during the free running cycle can limit the long term stability
of the atomic clocks based on cyclic feedback.

For the SpaceTime mission we have modified the scheme outlined above to
achieve the best performance. Here by “best performance” we mean one that can
satisfy the following requirements: 1) a reliable, power efficient, compact, and
low cost instrument, compatible with the space environment; 2) the requisite
stability of a part in 10−16 in about 70000 s; and 3) the capability to produce
unambiguous results.

At the core of our design is a modified architecture of the ion trap, to include
two segments (Fig.1) [13].

In this configuration, the generation of ions, their optical pumping, and the
final interrogation for the clock transition takes place in the first trap segment.
The interaction of ions with the applied microwave signal from the LO occurs
in the second segment. Ions, being charged particles, can be gently “shuttled”
back an forth between the two segments by applying a small dc potential for to
the “end cap” separating the two segments. Thus only the second trap segment,
where ions interact with the microwave signal, needs to be isolated from the
environmental perturbations. The major advantage of this architecture is that
the requirement of the environmental shielding is significantly reduced, leading to
considerable reduction in size and mass. This ability is crucial to the realization
of any spaceborne clock.
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Fig. 1. Line drawing of the Shuttle Trap.

The second important modification is a geometry whereby three of these
traps share the same vacuum chamber, applied potentials, and magnetic and
thermal environments, as shown in Fig.2.

Ions of three different atomic species are confined in different traps, forming
the basis for three separate clocks. The cycles of ion generation, optical pumping,
clock transition, and interrogation are common to all ions in the three traps. Each
trap confining potential, though, is set to trap only one of the three species. The
three potentials are nevertheless derived from the same source, and reduced
to the required value. The hyperfine transition in each of the ion species is
driven at the same cycle. While the transition frequency for each of the three
species is different, they are derived from a single local oscillator. Three different
resonant lamps optically pump, and later interrogate each of the ion species. This
arrangement implies that most environmental perturbations will be common to
ions confined in any of the three traps. Thus environmentally induced drifts can
be caused to be cancelled. This is another crucial aspect of the SpaceTime clock
experiment. Comparison of three independent clocks would leave the task of
unraveling the influence of the environment’s perturbations on each clock, from
a “true” signal to modeling with associated uncertainty.
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Fig. 2. Layout of the Tri-clock instrument.

For the SpaceTime mission, the specific design of the tri–clock calls for us-
ing mercury, cadmium, and ytterbium ions in the three traps. The hyperfine
energy levels of each ions, at 40.5, 14, and 12.5 GHz are shown in Fig.2. Each of
these ions has been previously used in the realization of an atomic clock [11]. In
the tri–clock instrument the optical pumping and the clock interrogation cycles
use resonant lamps. By manufacturing lamps which include all three species of
appropriate isotope, we plan to realize redundancy, another important consider-
ation in designing space instruments.

We plan to use the redundancy in the three clocks to measure, and further
eliminate, any environmental perturbations with different signature on different
ion species. In particular, the value of the any ambient magnetic field may be
obtained by using one of the three ions as the “probe” to measure the field,
which can then be used to cancel out its effect on the remaining two clocks.

A major advantage realized with the tri–clock architecture is the use of a
single local oscillator, from which all three hyperfine signals can be derived. This
approach will ensure that the noise of the local oscillator during its free running
interval is a common noise to all three clocks, and thus can be cancelled out to
a great extent. The extent of the cancellation is in the ratio of the frequencies,
with the largest noise on the 40.5 GHz (mercury transition), and the smallest
for the 12.5 GHz (ytterbium transition.) This cancellation is large enough that a
high stability quartz oscillator would suffice as an LO to achieve 10−16 stability
at 7000 s, as required for SpaceTime.

The tri–clock architecture will thus allow the major sources of noise and
perturbation to become common to all three clocks. This enables the cancellation
of all the common noise when the three clocks are inter–compared, to a level that
will allow the requisite sensitivity for finding a varying α. This feature, together
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with the specific dependence of a varying α on the nuclear charge (Z) of each
ion species, will produce an unambiguous signal as the three clocks are inter–
compared. Finally, the SpaceTime experiment based on a differential clock shift
measurement with the tri–clock instrument eliminates the need for comparing a
spaceborne clock with a ground based clock. This latter approach would greatly
complicate the mission by need for a stable, high data rate communication link,
and associated need for the modeling of the media through which it propagates.
The task of modeling alone, owing to the proximity to Sun, is difficult and subject
to uncertainties. In short, the design of the tri–clock instrument provides for
simplification of the mission, and reduction of weight, all of which significantly
help the cost of the experiment. These benefits of the tri–clock complement
the expected high performance and ensure that its signal are unambiguously
interpreted.

4 Mission Design

The SpaceTime is designed to fit the NASA Mid–sized Explorer mission type
(MIDEX). This mission type has specific limits set for the total cost, and the
schedule. The goal of the SpaceTime mission design is to deliver the clock payload
to the close vicinity of the Sun while minimizing complexity and risk. SpaceTime
launches from Cape Canaveral Air Station (CCAS) on a Delta 7925 launch
vehicle. This proven vehicle simplifies all aspects of the mission and allows us
to reduce risk and cost, and return breakthrough science in the shortest time
possible. After the first two stages burn, the third stage spins up to 60 rpm and
injects the spacecraft towards Jupiter. The target at Jupiter is to within 8.68
Jupiter radii, which will lead to a gravity assist to reduce the spacecraft energy,
allowing it to fall toward the Sun with a 4 solar radii pass. The SpaceTime
mission plans for two trajectory correction maneuvers (TCMs) to achieve its
trajectory. The first maneuver will occur approximately 10 days after launch,
and the second about one year after launch. Since SpaceTime differential redshift
measurements allow a 10% error in the solar flyby radius, we target to 4.2Rs ±
0.2Rs. This allows tolerable large navigation uncertainties at the Jupiter flyby.

After the Jupiter encounter, the spacecraft falls rapidly toward the Sun, and
will take only about 9 hours to travel from 10Rs to 4Rs. This trajectory greatly
simplified navigation, and the tracking scheme allows for a Doppler track once
every 1-3 months. This in turn simplifies mission operations and reduces cost at
no increase to mission risk.

4.1 Spacecraft

The SpaceTime spacecraft design is simple and reliable. This design leads to
reduced cost and risk in mission operations and allows the science data return
at its critical point near the Sun. The SpaceTime spacecraft utilizes extensive
heritage from past spacecraft, including Mars Pathfinder, Cassini, DS-1, Lewis,
MSP ’98, and Defense Systems programs. Comprehensive analysis has produced
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the best small spacecraft design for the SpaceTime mission within the budget
constraints. The primary purpose of the spacecraft is to take the SpaceTime
clocks as close as possible to the Sun and to allow the acquisition and trans-
mission of data from the clocks as the spacecraft nears the Sun. Figs. 3 and 4
show a spacecraft close–up and a near–solar pass configuration. The spacecraft
integrates a blowdown mono–propellant propulsion system and the necessary
spacecraft electronics to support the mission. The spacecraft electronics and the
clock are all within a single thermal enclosure.

Fig. 3. The spacecraft.

The large, conical solar shield protects the
entire spacecraft during the 4 solar radii en-
counter. The thermal control system of the
SpaceTime spacecraft will utilize this ther-
mal shield system that will isolate its flight
elements from the solar flux of a 4Rs (from
the solar center) close passage. This shield
system is based on a new technology and
consists of a solar blocking element (primary
shield), IR shields, High Temperature MLI,
and support structure. The system is a sim-
pler version of the Solar Probe shield system.
The first element of this shield will operate
at about 2000 K during close solar approach,
but the shield system will provide thermal
isolation that will allow the spacecraft ele-
ments behind it to operate at nominal tem-
peratures (0◦ to +40◦ C).

The spacecraft thermal control system components behind the shield system
utilizes flight–proven elements such as thermal conduction isolation, thermal
surfaces (paints, films), MLI, louvers, and electric heaters/thermostats. This
design will control spacecraft element temperatures for all flight regimes from
launch to Jupiter flyby, and close solar approach.

The SpaceTime spacecraft current best estimate dry mass is 114 kg, including
the 20-kg science payload, with contingencies of 30% in both mass and power.
The fuel load is about 30 kg for a launch mass of around 185 kg, the maximum
allowable mass that can be launched on a Delta 7925 with Star 30c kick stage to
a C3 of 120 km2/sec2. The attitude control subsystem (ACS) subsystem provides
attitude knowledge and control, and solar array articulation and control. The
Medium Gain Antenna (MGA) is body–mounted, perpendicular to the space-
craft centerline. Twin star trackers and an Inertial Measurement Unit (IMU)
provide primary attitude determination, with four analog Sun sensors serving
in a functional redundancy role as backup pointing devices. During the Jovian
gravity assist, the ACS system will operate in an all–stellar mode so that power
can be conserved by turning off the IMU.



SpaceTime Mission 379

Fig. 4. picture trajectory

The Command and Data Handling (C&DH) subsystem provides instrument
science data storage, spacecraft commanding, interfaces to the X–Band transpon-
der, ACS sensors and actuators, and spacecraft timing.

The communications subsystem supports X–band command uplink and data
downlink using the Small Deep Space Transponder, a 3-watt Solid State Power
Amplifier, one 0.6-meter diameter MGA, and dual low–gain patch antenna (LGA).
The MGA provides 100 bps data transmission near Jupiter and 100 bps during
the solar flyby. The LGAs provide emergency command capability.

The power subsystem provides power collection, storage, control, and distri-
bution. The Electrical Power Subsystem (EPS) is comprised of the solar array,
battery, charge control unit (CCU), power distribution and drive unit (PDDU),
and pyro initiator unit (PIU). Because of the profile of this mission, the Space-
Time spacecraft carries two sets of featherable solar arrays, a small secondary
battery and a high–energy primary battery for the critical final phase of the
mission when the solar arrays can no longer operate. The low temperature solar
panels are populated with 6.7m2 of silicon solar cells, providing 1500 W aver-
age power near Earth. The low temperature solar arrays are sized for stay–alive
power near Jupiter. The low temperature array is jettisoned after crossing Mer-
cury’s orbit at 0.3 AU. The high temperature portion of the solar array consists
of 0.15 m2 of Gallium Indium Phosphide cells at 6% efficiency and provides
power after crossing 0.3 AU. These arrays will provide up to 200W of power
as close as 0.1 to 0.15 AU when feathered to a 70-degree angle of incidence.
This will allow the SpaceTime clocks to be calibrated prior to the final phase of
the experiment. The high temperature arrays will also be jettisoned to prevent
an imbalance in control forces near the Sun. The High–Energy Density (HED)
primary battery, a 300 A-hour Lithium Carbon Fluoride (LiCF) package with a
long shelf life, provides the 3730 W-hr necessary during the 33-hour solar flyby
after the solar arrays are jettisoned at about 0.13 AU.

5 Conclusions

In this article we have described a new mission design for a sensitive clock test
of Einstein’s Equivalence Principle. The mission includes a payload consisting of
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a unique tri–clock instrument, based on cadmium, ytterbium, and mercury ions.
The instrument will fly to within four solar radii of the Sun, where a differential
drift between the three clocks will signal a violation of the Equivalence Principle.
The instrument is designed to eliminate or minimize all ambient noise sources,
and with the designed stability of 1×1016, enables an unambiguous test at a part
in 1013 level. This same measurement, interpreted as a search for a variation of
the fine structure constant alpha, will test the validity of string based theories
that specify a scalar field partner, such as the dilaton, to the tensor gravity.
An important feature of this mission is that it is based on proven, existing
technology, and can be flown within the cost and schedule constraints of NASA’s
MIDEX (Medium-sized Explorer) program.

Acknowledgements

The mission concept SpaceTime is the result of a concept study performed at
the Jet Propulsion Laboratory by a team. Members of the science team in the
SpaceTime proposal are John Anderson, John Armstrong, Thibault Damour,
Lute Maleki (PI), Ken Nordvedt, John Prestage, Michael Soffel, and Robert
Vessot. The mission design team included Freda Cheung, Elaine Hansen, Rob
Maddock, Steve Matousek (Proposal Manager), Bob Miyake, Bill Moore, George
Sprague, Ellie Trevarthen, Jay Wyatt and numerous others.

This work was carried out at the Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aeronautics and Space
Administration.

References

1. C.M. Will: Theory and Experiment in Gravitational Physics (Cambridge University
press, Cambridge 1981; Revised edition 1993).

2. T. Damour: in L. Maleki (Ed.) Proceedings of the Workshop on the Scientific Ap-
plications of Clocks in Space (JPL Publication 97-15, 1996), p. 13.

3. Y. Fujii: Prog. Theor. Phys. 99, 599 (1988).
4. J.D. Prestage, R.L. Tjoelker, and L. Maleki: Phys. Rev. Lett. 74, 3511 (1995).
5. T. Damour and A. M. Polyakov: Nuc. Phys. B 423, 542 (1994).
6. T. Damour and F. Dyson: Nucl. Phys. B 480, 37 (1996).
7. J.K. Webb, V.V. Flambaum, C.W. Churchill, M.J. Drinkwater, and J.D. Barrow:

Phys. Rev. Lett. 82, 888 (1999).
8. R.L. Tjoelker et al.: in J. Vig (ed.): Proceedings of 1996 IEEE International Fre-

quency Control Symposium, 1996, p. 1073.
9. J.D. Prestage, R.L. Tjoelker, G.J. Dick, and L. Maleki: J. Mod. Optics 39, 232

(1992).
10. L. Maleki: Proc. Europ. Freq. and Time Forum, Beconson, France, March 1995.
11. P.T.H. Fisk: Rep. Prog. Phys. 60, 761 (1997).
12. G.J. Dick and C.A. Greenhall: Proc. 1998 IEEE International Freq. Control Symp.,

99 (1998).
13. J.D. Prestage, R.L. Tjoelker, G.J. Dick, and L. Maleki: Proc. 1993 IEEE Interna-

tional Frequ. Control Symp. (Salt Lake City, USA 1993), p. 144.



Pulsar Timing –
Strong Gravity Clock Experiments
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Abstract. 25 years ago, in summer 1974, Joseph Taylor and Russell Hulse discovered
the first binary pulsar, a pulsar in orbit with a compact companion which itself is
most likely a neutron star. This pulsar, denoted PSR B1913+16, turned out to be the
most exciting laboratory for testing relativistic gravity theories. Before the discovery of
PSR B1913+16 all gravity experiments were confined to our solar system with its very
weak gravitational fields. Hence, it has been possible to test gravity theories only in
the first post–Newtonian approximation. Binary pulsars take us beyond the weak–field
context because of their high orbital velocity and/or the strong self–gravitational fields
of neutron stars.

To date, more than 70 binary pulsars have been discovered, most of them in orbit
with a neutron star or a white dwarf. Many binary pulsars belong to a group of so–called
millisecond pulsars which have very short rotational periods (< 20 ms) and slowdown
rates of typically 10−20, proving to be extremely accurate clocks. This gave rise to a
variety of new gravity experiments, like tests for the strong equivalence principle.

After a brief introduction to pulsars, the technical and theoretical aspects of binary–
pulsar gravity experiments are reviewed. The latest results are presented and an outlook
is given to future improvements of these experiments.

1 The Pulsar Population

Pulsars were discovered in 1967 by Antony Hewish and Jocelyn Bell at Cam-
bridge University. During a study of rapid fluctuations of extragalactic radio
sources caused by the interstellar medium they came across point like sources
which were emitting radio signals with extraordinary regularity [18]. Very soon
after their discovery, pulsars were understood to be highly magnetized rapidly
rotating neutron stars in our Galaxy, becoming apparent as ‘cosmic lighthouses’
with excellent rotational stability. Over the past 30 years, systematic surveys
with the world’s largest radio telescopes have revealed more than 1200 pulsars.
About 500 of them were found only recently in the on–going Parkes–multibeam
Galactic–plane survey [9] which proved to be extraordinarily successful and lead
to the discovery of a number of exciting single and binary pulsars. To date, ro-
tational periods of pulsars, P , span nearly 4 orders of magnitude ranging from
1.56 ms to 8.51 s. The observed period changes, Ṗ , explained by the loss of rota-
tional energy due to magnetic dipole radiation and/or relativistic particle winds,
range from 10−21 to a few times 10−11, corresponding to magnetic surface fields
of about 108 to 1014 Gauss, respectively. The majority of pulsars are clustered
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around a P of one second and a Ṗ of 10−15 (see Fig. 1). It is believed that these
pulsars were born in supernova explosions with rotational periods of a few tens
of milliseconds and then spun down into the region of ‘normal’ pulsars within
106 to 107 years.

There is a group of pulsars whose characteristic age (≡ P/2Ṗ ) typically
exceeds 109 years and whose magnetic surface fields lie below 1010 Gauss. Most
of them are found to be members of binary systems and are located to the
bottom left of the large group of ‘normal’ pulsars in Fig. 1. It is understood that
these pulsars were born as ‘normal’ pulsars in binary systems. Then, after 108

to 109 years the rotation became too slow and the pulsar–emission mechanism
ceased to work. In the meantime the companion star evolved, started to fill
its Roche lobe and transfer matter onto the neutron–star. The infall of matter
spun up the neutron star and suppressed the magnetic field by several orders
of magnitude, leaving a fast rotating ‘recycled’ pulsar with a weak magnetic
field behind. Depending on the initial mass, the companion star will either form
a second neutron star in a supernova explosion and create, in cases where the
supernova explosion does not unbind the binary, an eccentric double–neutron–
star system (high mass progenitor), or end up as a white dwarf in a very circular
orbit about a pulsar with rotational periods of, typically, a few milliseconds (low
mass progenitor).

About 5% of all pulsars known to date have been identified as binary pulsars,
i.e. pulsars which are members of binary systems. There are two binary pulsars
which are in orbit with a main–sequence B–star [21,24] and there is a third pul-
sar suspected to orbit a K–supergiant star [32]. The rest of the binary–pulsar
population is believed to have a compact star as a companion (white dwarf or
neutron star). Since in most cases the orbital separation is much larger than the
size of the compact companion, neither mass–transfer between the two compo-
nents of the binary system is present, nor tidal effects are having any significant
influence on their orbital dynamics (‘clean’ binary system). Therefore, the orbital
dynamics of most binary–pulsar systems should follow a simple ‘point–particle’
model. Presently six binary pulsars are thought to have a neutron–star as their
companion. The range of their orbital periods is from four hours to more than
two weeks and in all six cases the orbital eccentricity is high (see Table 1 for
details).

Table 1. Binary pulsars with neutron–star companions.

PSR P (ms) Pb (days) e discovery comments Ref.
J1141−6545 394 0.20 0.17 1999 maybe white–dwarf companion [32]
J1518+4904 40.9 8.63 0.25 1994 [36]
B1534+12 37.9 0.42 0.27 1990 [59]
J1811−1736 104 18.8 0.83 1997 [30]
B1913+16 59.0 0.32 0.62 1974 Hulse–Taylor pulsar [19]
B2127+11C 30.5 0.33 0.68 1988 in globular cluster M15 [1]
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Fig. 1. Plot of period derivative, Ṗ , versus pulse period, P , for pulsars taken from
[47,48]. Pulsars that are members of a binary systems are marked with a circle and
pulsars associated with a supernova remnant are marked with a star. For an updated
version of this P -Ṗ -digram see [32].

While the binary pulsar PSR B2303+49 was suspected to be a member of
a double–neutron–star system, more recent optical observations using the 10–
m Keck telescope indicate a massive white dwarf as the companion to PSR
B2303+49 [52]. Also PSR J1141−6545 could, instead of a neutron star, have a
massive white dwarf as a companion as pointed out by Tauris and Sennels [44].
In fact, most binary pulsars are in orbit with a white dwarf companion. While
the orbital periods range from 1.6 hours to 3.3 years the orbital eccentricities for
these systems are generally very small, in some cases even less than 10−5. All
of these systems suffered a phase of mass transfer in the past which was very
effective in circularizing the binary orbit.

For a general review on pulsars see [31,29].

2 Pulsar Timing

Pulsar timing has become an important subfield of observational astronomy and
proved to provide a powerful tool for many areas of physical and astrophysical
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research. In particular, the high–precision timing of millisecond pulsar (P < 20
ms) has a wide range of applications:

• Time–keeping metrology
• Planetary ephemerides
• High–precision astrometry (position and proper motion of pulsars)
• Probing the cosmological gravitational–wave background
• Tests of relativistic theories of gravity
• Properties of the interstellar medium
• Evolution of binary–star systems

See [23,5] for a review on pulsar timing applications.
A complete discussion of the observing procedures and instrumentation used

in pulsar–timing experiments is beyond the scope of this article. We therefore
only summarize the basic ideas. For a more detailed description the reader is
referred to review articles, like [3]. Due to the distribution of free electrons in
the interstellar medium, pulses at higher radio frequencies propagate at a higher
group velocity and, therefore, arrive earlier at the telescope than pulses at lower
frequencies. To correct for this propagation effect across the bandwidth of the
receiver one uses either filterbanks to divide the observing bandpass into small
channels or a ‘coherent dedispersion’ system, which samples the raw telescope
voltages and then removes the effects of dispersion using a software filter. In
practice the second method yields a clearly better timing precision.

Most of the pulsars are weak radio sources and therefore an addition of many
thousands of pulses is required in order to produce a pulse profile with a good
signal–to–noise ratio. Apart from this, a high number of individual pulses has to
be added, even for strong pulsars, to produce a stable integrated profile, since
individual pulses vary quite dramatically (see Fig. 2). Therefore the pulse signal
is folded over a time span of typically several minutes at the predicted topocen-
tric pulse period in order to produce a total–intensity profile. Cross–correlation
with a standard profile with high signal–to–noise ratio, obtained during previ-
ous observations, determines the observed rotational phase of the pulsar φ as a
function of the telescope time τ or, equivalently, the time of arrival (TOA) of
a chosen point of reference in the pulse profile. For a pulse profile with good
signal–to–noise ratio the location of the point of reference with respect to the
time stamp can be determined with high precision, typically 10−4 × P .

The TOA, which is measured using the time τ of the atomic clock stationed
at the radio–telescope site, has to be connected with the time T of the pulse
emission as measured in the co–moving frame of the pulsar. Thereby, one has to
correct for a number of propagation and time–dilation effects within the solar
system and, in case of binary pulsars, for propagation and time–dilation effects
in the binary system. This transformation can be written as

T = τ − τ0 +∆C −D/f2 +∆Roemer,� +∆Shapiro,� +∆Einstein,�
+∆Roemer,b +∆Shapiro,b +∆Einstein,b , (1)

where τ0 denotes a reference epoch and ∆C an offset between the observatory–
master clock and the reference standard of terrestrial time which is determined
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PSR B1133+16

Fig. 2. A sequence of 100 individual pulses of the strong pulsar PSR B1133+16. The
sum of all the individual pulses forms the characteristic integrated pulse profile as
shown in the box of the top.

using the Global Positioning System (GPS). The dispersive delay equals toD/f2,
where D is proportional to the column density of free electrons between pulsar
and observer and f is the observing radio frequency. The parameter D and
possible long–term variations of D can be determined by using observations
at different radio–frequencies. In Effelsberg, for instance, we use 1.4 GHz as
our prime timing frequency and in addition we make use of 0.8 and 2.7 GHz
observations [27]. ∆Roemer,�, ∆Shapiro,�, and ∆Einstein,� account for propagation
delays and time dilation effects within the solar system. If the pulsar is a member
of a binary system similar terms accounting for these effects within the binary
system are needed (index b in equation (1)). Full details on all of the terms in
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Fig. 3. Definition of the five Keplerian parameters for a pulsar in a binary orbit: The
location of periastron (point of closest approach to the center–of–mass of the binary
system) is given by the longitude of periastron, ω. The orbital period, Pb, is the time
elapsed between two consecutive periastron passages and T0 is the date of a chosen
periastron passage. The periastron distance is given by the eccentricity of the binary
orbit, e, and the semi–major axis of the pulsar orbit, ap. From timing observations,
however, only the combination ap sin i (projected semi–major axis) can be extracted,
where i is the orbital inclination.

equation (1) can be found in [11,49,17]. Each of these effects is described by a
set of parameters which form three major groups:

Spin parameters: Rotational frequency ν of the pulsar and its time derivatives.
Astrometric parameters: Position of the pulsar on the sky, proper motion, and

parallax.
Binary parameters: 5 Keplerian parameters (see Fig. 3) and a set of post–Kep-

lerian (PK) parameters, which account for relativistic corrections to a New-
tonian timing model.

In particular for millisecond pulsars, where in many cases TOA measurements
with sub–microsecond precision are achievable, timing parameters can be de-
termined with excellent accuracy. For instance, the positional coordinates for
some millisecond pulsars are known within a few micro–arc–seconds and orbital
periods are typically determined with a fractional precision of 10−10. In addi-
tion, while ‘normal’ pulsars show large random irregularities in their periods on
time–scales of months and years, known as timing noise (see [31] and references
therein), recycled pulsars are found to have a high rotational stability. Only a few
recycled pulsars show deviations from a simple spin–down model on time–scales
of a few years (‘red noise’) like PSR B1937+21 — the pulsar with the shortest
rotational period (1.56 ms) — as shown in Fig. 4. The combination of rotational
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stability and high timing–accuracy provide perfect conditions for high precision
‘clock comparison’ experiments which have the power to test strong–field gravity.

Fig. 4. Post–fit residuals for the millisecond pulsar PSR B1937+21 after fitting for
astrometric parameters, and the period and period derivative [25]. The unmodelled
long–term variations in the residuals are understood to be caused by timing noise
which strongly compromises the use of this pulsar as a long–term time standard.

The important point for testing relativistic effects in binary pulsar systems is
that the Keplerian and PK parameters can be measured in a phenomenological
manner, independently of the choice of a specific theory of gravity. One expects
that in a particular theory of gravity, the PK parameters can be written as func-
tions of the pulsar and companion masses, mp and mc, and the well–determined
Keplerian parameters. In general relativity, for instance, the five most important
PK parameters are given in a first approximation by [11]:

ω̇ = 3T 2/3
�

(
Pb

2π

)−5/3 1
1− e2

(mp +mc)2/3 , (2)

γ = T
2/3
�

(
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e
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where ω̇ denotes the relativistic advance of periastron, γ is the amplitude of the
combined effect of relativistic time dilation and gravitational redshift, Ṗb denotes
the time derivative of the orbital period due to gravitational wave damping, and
r and s are two parameters related to the Shapiro propagation delay caused by
the gravitational field of the companion. The masses mp and mc are expressed
in units of solar masses (M�), and we use the notations s ≡ sin i and T� ≡
GM�/c3 = 4.925490947µs. G denotes the Newtonian constant of gravity and c
the speed of light. The projected semi–major axis x is defined as x ≡ ap sin i/c.

The measurement of the five Keplerian parameters and two post Keplerian
parameters will allow to determine the masses of pulsar and companion within
a given theory of gravity. Once the masses are known with sufficient precision
all the other PK parameters can be determined for this system. Hence, the
measurement of more than two PK parameters allows to test the theory of gravity
being used. More precisely, the measurement of n PK parameters determines n
curves in the two dimensional mp–mc plane whose shape and position depend
on the theory of gravity being applied. If the theory of gravity and the simple
theoretical model give an accurate description for the binary system, the n curves
meet at one point [17].

3 Binary Pulsars and Gravity Experiment I.
Double–Neutron–Star Binaries

Out of the 6 known double–neutron–star systems presently only two of them
allow the determination of more than two PK parameters, which is necessary to
conduct tests as outlined in the previous section. In the following we summarize
the results for these two binary–pulsar systems.

3.1 PSR B1913+16

PSR B1913+16 was the first binary pulsar to be discovered. It was 25 years ago
when Joseph Taylor and Russell Hulse found this double–neutron–star system
during a systematic search for new pulsars using the 305–m Arecibo radiotele-
scope [19]. At present three PK are measured for this system with high precision:
the relativistic advance of periastron ω̇, the Einstein delay γ, and a change in
the orbital period Ṗb. Figure 5 shows the corresponding three curves in the mp–
mc plane based on equations (2) to (4) and the observed values for these three
parameters.

Before the observed Ṗb can be compared to the theoretical value, we must
apply a correction which accounts for the acceleration of the binary–pulsar sys-
tem with respect to the solar system caused by the gravitational potential of the
Galaxy and an apparent acceleration due to the proper motion of the binary sys-
tem (Shklovskii effect). For PSR B1913+16 these corrections can be estimated
with necessary precision and as a result, ω̇, γ, and Ṗ corrected

b are in excellent
agreement (0.25%) with the predictions of general relativity [49,16,45,46]. In
particular, the observed change in the orbital period confirms that the binary
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Fig. 5. Mass–mass diagram for the PSR B1913+16 system. Labelled curves illustrate
68% confidence ranges for indicated PK parameters.

system is losing orbital energy at the rate which is predicted by the quadrupole
formula of general relativity. Apart from this test, PSR B1913+16 is providing
the most precise neutron–star masses ever measured: mp = 1.4411± 0.0007 and
mp = 1.3879± 0.0007. 1

Unfortunately, there is little hope that the precision of this ω̇–γ–Ṗb test can
improve much further, since this would require a high precision in the determi-
nation of the pulsar distance and a good knowledge of the gravitational field of
our Galaxy in order to correct for acceleration effects present in the observed
Ṗb. Presently the only way to determine the distance of PSR B1913+16 is based
on models of the free electron distribution in our Galaxy, which rarely allow a
precision better than 20%.

3.2 PSR B1534+12

With the discovery of PSR B1534+12 in 1990 by Wolszczan [59] a second double–
neutron–star binary became available for testing relativity in strong field regimes.
PSR B1534+12 is significantly brighter than PSR B1913+16, and its pulse has
1 Note, these are the observed masses of pulsar and companion, which are related to the
intrinsic (true) masses by mintrinsic = Dmobs. The parameter D is a Doppler factor
characterizing the radial velocity, Vr, of the binary–pulsar system. D � 1 − Vr/c
cannot be determined from timing observations and is set equal to one during the
fitting process.
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a narrow peak, leading to more precise timing measurements. In addition, the
orbit is seen nearly edge–on and, as a consequence, the Shapiro propagation delay
caused by the gravitational field of the companion star can easily be extracted
from the timing data. Thus, in addition to ω̇, γ, and Ṗb two PK parameters
characterizing the Shapiro propagation delay are known for this double–neutron–
star system, i.e. the “range” r and the “shape” s of the Shapiro delay [41]. The
resulting five curves in the mass–mass digram are shown in Fig. 6.

r

s

.
ω P b

.

γ

Fig. 6. Mass–mass diagram for the PSR B1534+12 system. Labelled curves illustrate
68% confidence ranges for indicated PK parameters.

The four curves for ω̇, γ, r, and s have a common solution in the mp–mc

parameter space (mp = 1.334 ± 0.002, mp = 1.344 ± 0.002) leading to non–
radiative test of relativistic gravity, complementing the (radiative) ω̇–γ–Ṗb test
for PSR B1913+16 [50].

The fifth curve corresponding to the observed Ṗb does not agree with the
solution for the ω̇–γ–r–s test. As in the case of PSR B1913+16 the observed Ṗb

is the sum of an apparent and an intrinsic change of the orbital period. However,
for PSR B1534+12 the non–intrinsic part of Ṗb ammounts to more than 30%
of the observed Ṗb. The Ṗb curve does agree with the other four curves if one
assumes a pulsar distance of 1.08±0.15 kpc [42]. In order to perform a ω̇–γ–Ṗb

test for this system a precise distance estimation is needed. A reliable value for
the distance could either come from the measurement of a timing parallax or
the measurement of a parallax distance using VLBI observations.
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4 Binary Pulsars and Gravity Experiment II.
Small–Eccentricity Binary Pulsars

The majority of binary pulsars is found to be in orbit with a white–dwarf com-
panion. Due to the mass transfer in the past, these systems have very small
orbital eccentricities. Therefore, the location of periastron is not at all a promi-
nent feature in pulsar timing observations, and neither ω̇ nor γ were measured
for any of these binary pulsars. In fact, the only PK parameters measured with
reasonable accuracy for a small–eccentricity binary pulsar are the two Shapiro
parameters, r and s, in case of PSR B1855+09 [25]. However, since the orbital
period of this system is 12.3 days, the expected Ṗb is by far too small to be of
any importance for timing observations and, consequently, there is no third PK
parameter which would allow the kind of test conducted with the two double–
neutron–star systems above.

On the other hand, many alternative theories of gravity, tensor–scalar theo-
ries for instance, predict effects that depend strongly on the difference between
the gravitational self–energy per unit mass (ε ≡ Egrav/mc2) of the two masses
of a binary system. While this difference in binding energies is comparably small
for double–neutron–star systems, it is large in neutron star–white dwarf systems
since for a white dwarf ε ∼ 10−4 while for a 1.4M� neutron star ε ≈ 0.15.

Damour and Eposito–Farèse developed a field–theory based framework for
discussing and interpreting experimental tests of relativistic gravity at a second
post–Newtonian (2PN) level [12]. This framework is based on a class of tensor–
multiscalar theories in which gravity is mediated by a tensor field together with
one or several scalar fields. Within this tensor–multiscalar framework, 2PN devi-
ations from general relativity can be fully described by two parameters, ε and ζ.
Damour and Eposito–Farèse come to the conclusion that it is extremely difficult
to measure these parameters in the solar system. In a second paper [13] they
go even further and demonstrate that certain classes of tensor–scalar theories
develop nonperturbative strong field effects which lead to significant deviations
from general relativity in conditions involving strong gravitational fields. Since
such strong field effects only occur in neutron stars above a certain critical mass,
they are completely inaccessible by solar–system experiments and, at present,
could only be detected in binary pulsar experiments. It was pointed out by
Damour and Eposito–Farèse in [14], that future LIGO–VIRGO observations of
inspiralling compact binaries are not competitive with present binary–pulsar
tests in their discriminating probing power of strong–field gravity effects. Thus,
binary pulsars are and will continue to be superb tools for testing strong–field
aspects of gravity.

While double–neutron–star systems, like PSR 1534+12 and PSR B1913+16,
already tightly constrain tensor–multiscalar theories of gravity, there are theo-
retical predictions for which neutron star–white dwarf systems provide better
testing grounds, like the existence of gravitational dipole radiation and the vio-
lation of the strong equivalence principle.
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4.1 Gravitational Dipole Radiation

Unlike general relativity, many alternative theories of gravity predict the pres-
ence of all radiative multipoles —monopole and dipole, as well as quadrupole and
higher multipoles [56]. For binary systems scalar–tensor theories, for instance,
predict a loss of orbital energy which at highest order is dominated by scalar
dipole radiation. As a result, the orbital period, Pb, should change according to

Ṗ
(dipole)
b = −4π2G∗M�

c3Pb

1 + e2/2
(1− e2)5/2

mpmc

mp +mc
(αp − αc)2 +O

(
v5

c5

)
, (7)

where −αpmp and −αcmc are the total scalar charge of pulsar and companion,
respectively. G∗ is the ‘bare’ gravitational constant and the masses mp and
mc are measured in units of solar masses M�. For a white dwarf companion
|αc| � 1 and thus the expression (αp − αc)2 in equation (7) can be of the order
one if the pulsar develops a significant amount of scalar charge. In this case
the gravitational wave damping of the orbit is completely dominated by the
emission of gravitational dipole radiation. Note, in double–neutron–star systems
where the two components have similar mass the term (αp − αc)2 is very small
and, therefore, gravitational dipole radiation would be of much less importance
than in neutron star–white dwarf systems.

PSR J1012+5307 is a 5.3 ms pulsar in a 14.5 h circular orbit with a low mass
white–dwarf companion. Since its discovery in 1993 [35] this pulsar has been
timed on a regular basis using the Jodrell Bank 76–m and the Effelsberg 100–m
radiotelescope, sometimes achieving a timing accuracy of 500 ns after just 10
min of integration [27,28]. In addition, the white–dwarf companion appears to
be relatively bright (V = 19.6) and shows strong Balmer absorption lines. Based
on white dwarf model calculations, a companion mass of mc = 0.16 ± 0.02 and
a distance of 840 ± 90 pc was derived [51,8]. Further, a reliable radial velocity
curve for the white dwarf has been extracted, which then, in combination with
the pulsar timing information, gave a mass for the pulsar of mp = 1.64 ± 0.22.
Since e - 0 for this binary system, we find from equation (7)

Ṗ
(dipole)
b ≈ −5× 10−10 α2

p . (8)

On the other hand, the change of the orbital period as predicted by general
relativity amounts to −10−14, which is more than four orders of magnitude less
if |αp| is of the order one. A comparison with the limits on Ṗb, as extracted from
pulsar–timing observations, i.e. Ṗb = (0.1± 1.8)× 10−13, sets an upper limit of

|αp| < 0.02 . (9)

Using the 2PN parameter ζ, α2
p in equation (8) can be replaced by c2pζ where

cp is the compactness of the neutron star. For a medium equation of state cp ≈
0.21mp/M� holds and we find

−3× 10−3 < ζ < 3× 10−3 , (10)

which is the so far tightest limit on the parameter ζ [28].
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Provided regular timing observations are conducted on a monthly basis, limits
on the change of the orbital period for this system should improve by a factor
of five for this system within the next three years.

4.2 Violation of the Strong Equivalence Principle

The strong equivalence principle (SEP) requires the universality of free fall of all
objects in an external gravitational field regardless of their mass, composition
and fraction of gravitational self–energy. While all metric theories of gravity
share the property of universality of free fall of test particles (weak equivalence
principle), many of them, which are considered as realistic alternatives to general
relativity, predict a violation of the strong equivalence principle. It was pointed
out by Nordtvedt [37] that laboratory–size bodies possess a negligible fraction of
gravitational self–energy and therefore laboratory–free–fall experiments indicate
nothing about a violation of the SEP. Nordtvedt [38] further pointed out that
lunar–laser–ranging experiments have the potential to test a violation of the SEP
due to the difference in fraction of gravitational self–energy between the Earth
(ε ∼ −4.6 × 10−10) and the Moon (ε ∼ −0.2 × 10−10) which are both exposed
to the (external) gravitational field of the Sun. A violation of the SEP can be
understood as an inequality between the gravitational mass, mg, and the inertial
mass, mi, which can be written as function of ε:

mg

mi
≡ 1 + δ(ε) = 1 + ηε+O (ε2) . (11)

While the analysis of lunar–laser–ranging data tightly constrains the ‘Nordtvedt
parameter’ η [58,33] it indicates nothing about a violation of the SEP in strong–
field regimes, i.e. terms of higher order in ε, due to the smallness of ε for solar–
system bodies. For neutron stars, however, ε ∼ 0.15 and thus binary–pulsars
with white–dwarf companions (ε ∼ 10−4) provide ideal laboratories for testing a
violation of the SEP due to nonlinear properties of the gravitational interaction
[15].

In case of a violation of the SEP the eccentricity vector of a small–eccentricity
binary–pulsar system with a white–dwarf companion exposed to the external
gravitational field of the Galaxy evolves due to Fig. 7. For the length of the
‘induced’ eccentricity vector eF one finds

eF ∝ (δp − δc) P 2
b a⊥ . (12)

Therefore, small eccentricity binaries with long orbital periods are most sensitive
to a violation of the SEP. Since neither θ nor eR are known quantities in our
analysis we have to treat them in a statistical manner in order to get limits for
eF . The angle θ, for instance, is assumed to be uniformly distributed between 0
and 2π. On the other hand, given a certain (δp− δc) - δp, i.e. a certain eF for a
given binary pulsar, the observed eccentricity, e, sets an upper limit on θ which
is independent of eR. If we now compare the limit on θ which we get for every
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Fig. 7. Evolution of the eccentricity vector e (vector of length e pointing to periastron)
for a small eccentricity binary system in case of a violation of the SEP [15]. e is a
superposition of the constant vector eδ and the vector eR which is turning in the
orbital plane with the rate of the relativistic advance of periastron, i.e. θ = θ0 + ω̇t.
The vector a⊥ denotes the projection of the Galactic acceleration onto the orbital
plane.

observed small–eccentricity binary–pulsar system with a uniform distribution
using Monte–Carlo simulations we obtain an safe upper limit for δp which is

|δp| < 0.009 (95% C.L.) (13)

(For details see [55]).
In the framework of tensor–multiscalar theories δp can be expressed using

the 2PN parameters ε and ζ. For a medium equation of state one finds

δp ≈ 0.045
(

mp

M�

)2 (ε
2
+ ζ
)

. (14)

Consequently, assuming a typical neutron–star mass of 1.4M� one obtains∣∣∣ε
2
+ ζ
∣∣∣ < 0.1 (95% C.L.) . (15)

Since ζ is already tightly constrained by equation (10) we find a safe upper limit
for |ε| of 0.2. Further restrictions on ε can be derived from the PSR B1534+12
and PSR B1913+16 tests (see [12] for details).

4.3 Violation of Local Lorentz Invariance and Conservation Laws

If gravity is mediated in part by a long–range vector field or by a second tensor
field one expects the global matter distribution in the Universe to select a pre-
ferred frame for the gravitational interaction [57]. At the post–Newtonian level,
gravitational effects associated with such a violation of the local Lorentz invari-
ance of gravity are characterized by two theory dependent parameters α1 and α2.
The close alignment of the Sun’s spin axis with the total angular momentum of
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the solar system yields a tight bound on the second parameter, α2 < 2.4× 10−7

[39]. If α1 were different from zero, a binary system which moves with respect
to the global matter distribution in the Universe would suffer a secular change
of the orbital eccentricity e. In fact, for small eccentricity binary systems the
evolution of the eccentricity vector e is the same as illustrated in Fig. 7 for a
violation of the SEP. This time, however, a⊥ represents the direction of motion
with respect to the preferred frame projected onto the orbital plane and the
‘induced’ eccentricity vector eF has the property

|eF | ∝ α1 |mp −mc| P 1/3
b w⊥ , (16)

where w⊥ is the projected velocity of the binary system with respect to the
global matter distribution, i.e. the cosmic microwave background. Again we can
perform a Mote–Carlo analysis as outlined in the previous section and derive an
upper limit for the parameter α1 from this [55]:

|α1| < 1.2× 10−4 (95% C.L.) (17)

This limit is slightly better than the limit obtained from lunar–laser–ranging
data [34] and, more importantly, also holds for strong gravitational–field effects
which could occur in the strong–field regions of neutron stars. Due to its small
eccentricity, e < 1.7 × 10−6 (95% C.L.), and high velocity with respect to the
cosmic microwave background (w ≈ 500 km/s), PSR J1012+5307 turns out to
be the most important binary system for this kind of analysis [28].

In theories of gravity which violate the local Lorentz invariance and the
momentum conservation law, a rotating self–gravitating body will suffer a self–
acceleration which is given by [40]

aself = −α3

3
ε w ×Ω (18)

where α3 is a theory dependent parameter and ε is the fraction of gravitational
self–energy of the body moving with velocity w with respect to the preferred
frame. Ω denotes the rotational velocity of the body. Again, binary pulsars
are ideal probes for this kind of self–acceleration effects [6]. A careful analy-
sis analogous to the previous analyses (SEP, local Lorentz invariance), which
appropriately takes care of selection effects, gives

|α3| < 1.5× 10−19 (95% C.L.) (19)

as a safe upper limit for a combined violation of local Lorentz invariance and
momentum conservation [55].

5 Geodetic Precession

In general relativity the proper reference frame of a freely falling object suffers
a precession with respect to a distant observer (geodetic precession). This was
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tested with high precision in the static gravitational field of the sun using the
Earth–Moon reference system [58,34]. In a binary–pulsar system this geodetic
precession leads to a relativistic spin–orbit coupling, analogous to spin–orbit
coupling in atomic physics. As a consequence, the spin of the pulsar precesses
about the orbital angular momentum with an angular frequency [4,7]

Ωprec =
(
2π
Pb

)5/3

T
2/3
�

mc(4mp + 3mc)
2(mp +mc)4/3

1
1− e2

. (20)

Since the angular momentum of the orbital motion is much larger than the
spin of the pulsar it practically represents a fixed direction in space, defined by
the orbital plane of the binary system. For PSR B1913+16, for instance, Ωprec

amounts to 1.21◦ per year, i.e. it takes 300 years for a full 360◦ precession. If
the spin of the pulsar is sufficiently inclined with respect to the orbital angular
momentum, the geodetic precession of the pulsar will notably change the spin–
direction of the pulsar. As the angle between the pulsar–spin axis and the line–
of–sight to the pulsar changes, our view of the pulsar–emission region changes
and, consequently, a secular evolution of the observed pulse profile is expected.

For PSR B1913+16 long–term changes in the 1.4 GHz pulse profile were first
reported ten years ago byWeisberg, Romani & Taylor [53]; (see Fig. 8 for a plot of
the pulse profile). They observed a change in the relative amplitude of the leading
and trailing sub–pulse of the PSR 1913+16 pulse–profile which was understood
as the first detection of the effects of geodetic precession in a binary system.
Based on a simple model for the intensity of pulsar–radio emission, Istomin [20]
derived a value of 25◦ for the angle between the spin axis of the pulsar and
the orbital angular momentum and made the prediction that the pulsar will
become unobservable near the year 2020, when geodetic precession moves the
line–of–sight outside the emission region of PSR B1913+16. Cordes, Wasserman,
and Blaskiewicz [10] used polarization data to constrain the orientation of the
pulsar and argued that a change in the separation between the two sub–pulses,
as expected from a simple hollow–cone model for the pulsar–radio emission, has
not been observed so far due to an unfavourable phase in the precession. In
1998, eventually, Kramer [26] reported the detection of changes in the sub–pulse
separation for PSR B1913+16 based on five years of observations at the 100–m
Effelsberg radiotelescope and showed that these changes are in agreement with
a hollow–cone model. New Arecibo observations [46] and Effelsberg polarization
data [22] lead to improved restrictions on the orientation and emission–geometry
parameters of PSR B1913+16 (based on pure geometrical arguments). It is worth
noting, that these restrictions still allow for a geometry where the line of sight
will never move outside the emission cone and the pulsar therefore is always
visible.

Only recently Stairs et al. [43] reported a secular evolution of the PSR
B1534+12 (Ωprec = 0.51◦/yr) pulse profile. In both cases, PSR B1913+16 and
PSR B1534+12, the changes in the observed pulse profiles are generally accepted
as a qualitative test for the presence of geodetic precession in these systems. To
date, however, in non of these two cases one can derive useful limits to the rate of



Pulsar Timing – Strong Gravity Clock Experiments 397

Fig. 8. Pulse profile of PSR B1913+16 at 1.41 GHz.

precession, Ωprec. Due to the uncertainties in pulsar emission it remains an open
question whether one day these experiments will allow for a quantitative test of
geodetic precession. PSR B1534+12 seems to be the more promising candidate
since its magnetic geometry is well constrained from polarization observations
[2]. For pulsar astronomy geodetic precession provides a unique opportunity to
obtain two–dimensional information on the structure of a pulsar emission zone
[53,54].

Two more pulsars from Table 1 have a significant rate of geodetic precession,
both PSR B2127+11C and PSR J1141−−6545, exceeding PSR B1913+16 in its
precession rate with Ωprec = 1.3◦/yr and Ωprec = 1.7◦/yr, respectively. While
PSR B2127+11C is a weak pulsar where it is difficult to get a pulse profile with
sufficient signal–to–noise ratio, the newly discovered pulsar PSR J1141–6545 is
likely to show interesting pulse–profile changes within the next few years.
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12. T. Damour and G. Esposito-Farése: Phys. Rev. D 53, 5541 (1996).
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Abstract. We present a second–quantized field theory of massive spin one–half parti-
cles or antiparticles in the presence of a weak gravitational field treated as a spin two
external field in a flat Minkowski background. We solve the difficulties which arise from
the derivative coupling and we are able to introduce an interaction picture. We derive
expressions for the scattering amplitude and for the outgoing spinor to first–order. In
several appendices, the link with the canonical approach in General Relativity is es-
tablished and a generalized stationary phase method is used to calculate the outgoing
spinor. We show how our expressions can be used to calculate and discuss phase shifts
in the context of matter–wave interferometry (especially atom or antiatom interfer-
ometry). In this way, many effects are introduced in a unified relativistic framework,
including spin–gravitation terms: gravitational red shift, Thomas precession, Sagnac
effect, spin–rotation effect, orbital and spin Lense–Thirring effects, de Sitter geode-
tic precession and finally the effect of gravitational waves. A new analogy with the
electromagnetic interaction is pointed out.

1 Introduction

The development of high accuracy atom interferometers, used as clocks in the
microwave or in the optical domain, as inertial sensors (gyros, gravimeters, gra-
diometers...) or for the determination of atomic masses and of the fine structure
constant [1–11], requires now a framework to describe the interference of atom
waves in a rigorous way. On one hand, one needs to investigate general rela-
tivistic effects including those involving the spin of the atoms and, on the other
hand, it is necessary to take into account the statistical properties (bosonic or
fermionic) of the interfering particles, given the development of coherent atom
wave sources and also for a proper treatment of the detection noise. One would
also like to be able to discuss the propagation of antimatter in interferometers
in the presence of gravitation and as suggested in reference [22] the properties of
coherent antimatter waves (generated by an antiatom laser such as an antihydro-
gen Bose–Einstein condensate). This is possible only within relativistic quantum
field theory. Atoms (or antiatoms), in a given eigenstate of the internal atomic
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Hamiltonian, are considered as elementary particles having a rest mass fixed by
the energy of the atomic level and a spin equal to the total angular momentum
of the atom in that level. In this paper, we shall consider only Dirac particles for
illustration. This is the simplest example of particles with spin which still con-
tains most interesting effects related to spin and applies to neutron or electron
interferometry as a special case. The generalization to others spin values is pos-
sible along similar lines with Dirac–type equations (Bargmann–Wigner [27], de
Broglie fusion method [28], Durand [29]). Our overall goal is to introduce grav-
itation and general relativistic effects at the quantum level of modern atomic
physics and quantum optics experiments. For this, we propose an extension of
our first paper on atom interferometry in General Relativity [12], which includes
now a second–quantization scheme for the atom waves in the presence of grav-
itational and electromagnetic fields. The point of view adopted in this paper is
the extrinsic point of view using purely quantum field theory in a flat Minkowski
background. The connection with the canonical intrinsic approach, using Dirac
equation in curved space–time, is made in Appendices A and B. The reader who
wishes to start with this canonical approach is thus invited to read first these
appendices.

In the main text, we begin right away with the minimal coupling Lagrangian
in flat space–time, which is identical to the one derived in curved space–time
for a standard choice of tetrads. Then, we proceed with the quantization of
the Dirac field and we emphasize the difficulties which arise because of the
derivative coupling. These difficulties are solved in a consistent scheme which
allows also to define an interaction picture. The evolution operator and the S–
matrix are constructed and we demonstrate explicitly a conjecture of Gupta.
These results are used to derive formulas for the transition amplitude and for
the outgoing spinor in the weak–field approximation, first in configuration space
and second in the momentum representation. An expansion in the perturbation
wave vector (�k/mc) is used to retrieve various physical effects, some of which
are well–known. A new analogy with the electromagnetic interaction is presented
which includes all components of the field hµν and generalizes gravitoelectric
and gravitomagnetic interactions. In Appendices C and D, calculations of the
outgoing spinor are sketched, first with a generalized stationary phase method
in configuration space and second in the momentum representation.

2 Lagrangian Theory

Considered as a field theory in flat spacetime, the theory describing the interac-
tion of matter with a given gravitational field will be defined by a Lagrangian
density of the following form [15,19]:

L = L0 − 1
2h

µνTµν , (1)

where hµν is the given external field, and where L0 is the free Lagrangian density
of the matter field and Tµν the corresponding stress–energy tensor. For a Dirac
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field, one has respectively1, in symmetrical form,

L0 =
�c

2

[
Ψ

(
iγµ
→
∂µ − mc

�

)
Ψ + Ψ

(
−iγµ

←
∂µ − mc

�

)
Ψ

]
, (2)

Tµν = −ηµνL0 + �c

4

[
Ψ
(
iγµ
−→
∂ν − i

←−
∂νγµ

)
Ψ + Ψ

(
iγν
−→
∂µ − i

←−
∂µγν

)
Ψ
]
. (3)

The total Lagrangian density (1) then becomes

L =
(
1 + 1

2h
)L0 − 1

4 i�ch
µν Ψ

(
γµ
−→
∂ ν −←−∂ νγµ

)
Ψ, (4)

where2 h = hµµ = ηµνh
µν . This Lagrangian density can also be considered

as obtained from the Lagrangian density valid in General Relativity for the
interaction of the Dirac field with a prescribed gravitational field in the linear
approximation (see the Appendices).

The equations for Ψ and Ψ derived from (4) are the following3:

[
(
1 + 1

2h
)
(iγµ−→∂ µ −mc/�)− i

2
hµνγµ

−→
∂ ν − i

4
∂νh

µνγµ +
i

4
∂µhγ

µ]Ψ = 0, (5)

Ψ [(−iγµ←−∂ µ −mc/�)
(
1 + 1

2h
)
+

i

2
←−
∂ νγµh

µν +
i

4
∂νh

µνγµ − i

4
∂µhγ

µ] = 0. (6)

They admit the conserved current

jµ = cΨ [γµ + 1
2hγ

µ − 1
2h

µνγν ]Ψ, (7)

which coincides with the usual Dirac current when the gravitational field van-
ishes.

In order to stress some other differences and analogies with electromagnetism,
we may write the equation for Ψ with a covariant derivative in the usual sense
of non–Abelian gauge field theories in flat space–time

iγν(−→∂ ν +
i

4
σλµ∂λhµν − 1

2
hν

α−→∂ α)Ψ − mc

�
Ψ = 0 (8)

where
σµν =

i

2
(γµγν − γνγµ) (9)

1 The conventions used here for the metric and for the Dirac equation and matrices
are generally those of [17]. In particular, the signature of the metric is taken as
(+,−,−,−). Greek indices µ, ν, ... run from 0 to 3 and latin indices run from 1 to
3. The space–time 4–vector is written x = (x0,x) = (ct,x). The partial derivatives
with the right arrow act on the right and those with the left arrow on the left.

2 The term (h/2)L0 in (4) comes from the term containing L0 in (3), and was omitted
in [16]. However, L0 which vanishes when the free Dirac equation is satisfied, does
not vanish here.

3 If one considers these equations as first–order equations with respect to the hµν ’s,
the factor (1 + h/2) in the first term can be replaced by 1. But it can be shown
that the equations so obtained cannot be derived from a Lagrangian, if this latter is
restricted to depend linearly on Ψ and Ψ , and to admit first–order derivatives only.
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and where the factor
(
1 + 1

2h
)
has been removed. The Poincaré generators are

associated with gauge fields and a local gauge invariance4

Ψ ′(x) =
[
1 +

i

8
σλµ (∂λξµ − ∂µξλ)− ξλ∂λ

]
Ψ(x) (10)

h′µν(x) = hµν(x)− ∂µξν − ∂νξµ . (11)

3 Quantization

We want now to proceed with the quantization of the field Ψ submitted to the
interaction defined by (4). When they are applied directly, the standard methods
lead to some difficulties coming from the presence of a derivative coupling in the
Lagrangian. These problems are, first, briefly discussed, then, a solution is pre-
sented allowing the quantization together with the definition of the interaction
picture.

3.1 Difficulties with the Derivative Coupling

Two methods can be used, a priori, according to whether the Lagrangian is
taken under a symmetrical or a asymmetrical form.

Symmetrical Lagrangian. Starting from the symmetrical Lagrangian (4), the
usual anticommutation relations will be obtained from the following expression
of the conjugate momentum

Π = 2
∂L
∂Ψ̇

, with Ψ̇ = ∂tΨ , (12)

which gives

Π = i�Ψ [(1 + 1
2h)γ

0 − 1
2h

0µγµ], (13)

and

{Ψα(x), Πβ(y)}x0=y0 = i�δαβ δ(x− y) (14)

where α and β are spinorial indices.
By introducing the matrix (depending on the coordinates)

γ−1 = (1 + 1
2h)γ

0 − 1
2h

0µγµ , (15)

these formulas can be rewritten

Π = i�Ψγ−1, (16)

4 Differences with usual Yang–Mills theories come from the non–commutation of the
Lorentz generators with the Dirac matrices and from the fact that the translation
generators act on space–time itself.
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and

{Ψα(x), Ψβ(y)}x0=y0 = (γ(x))αβ δ(x− y). (17)

For the free field the matrix γ(x) reduces to γ0. However, it appears that the
Heisenberg equations, which are generally equivalent to the equations of motion,
are not satisfied here under their most usual forms. To write the formulas in a
condensed form, let us introduce the two operators

−→D = �c

[
(1 + 1

2h)(−iγk
−→
∂k +mc/�) +

i

2
hµkγµ

−→
∂k +

i

4
(∂νhµν − ∂µh)γµ

]
, (18)

←−D = �c

[
(iγk←−∂k +mc/�)(1 + 1

2h)−
i

2
←−
∂kγµh

µk − i

4
(∂νhµν − ∂µh)γµ

]
. (19)

One then finds that the Hamiltonian density ΠΨ̇ − L can be written as

H =
1
2
[Ψ−→D Ψ + Ψ

←−D Ψ ], (20)

while the field equation reads

i�cγ−1∂0Ψ = −→D Ψ. (21)

The relation −→D Ψ = Ψ
←−D and the formula (γ−1)† = γ0γ−1γ0 then give the

conjugate equation

−i�c∂0Ψ γ−1 = Ψ
←−D . (22)

Using an integration by parts, the total Hamiltonian H can be transformed into

H =
∫
(d3x)Ψ−→D Ψ +

i�c

2

∫
(d3x)Ψ(∂0γ−1)Ψ. (23)

The anticommutation relation (17) then gives the commutator

[H,Ψ ] = −γ−→D Ψ − i

2
�c(γ∂0γ−1)Ψ , (24)

or, given the field equation,

[H,Ψ ] = −i�c∂0Ψ − i

2
�c(γ∂0γ−1)Ψ. (25)

Similarly, one has [
H,Ψ

]
= −i�c∂0Ψ − i

2
�cΨ(∂0γ−1)γ, (26)

then

[H,Π] = −i�c∂0Π +
i

2
�cΠγ∂0γ

−1. (27)

The second terms in the right members of (25), (26) and (27) are unusual, since
the fields Ψ, Ψ and Π behave as if, considered as functions of some fundamental
dynamical variables, they were also explicitly dependent on the time. From the
expression of Π, it is in fact obvious that, among Ψ and Π one of them, at least,
explicitly depends on time. But this is not obvious for Ψ .
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Asymmetrical Lagrangian. The preceding difficulty takes another form if, as
it is more usual [18], the Lagrangian (4) is replaced by the asymmetrical one

L′ = L+
i�

2
∂µj

µ

= �c Ψ

[
(1 + 1

2h)(iγ
µ−→∂µ −mc/�)Ψ − i

2
hµνγµ

−→
∂νΨ − i

4
∂νh

µνγµΨ +
i

4
∂µhγ

µΨ

]
.

(28)

The field equations are left unchanged, and the conjugate field is again:

Π ′ =
∂L′
∂Ψ̇

= i�Ψγ−1. (29)

Since Π ′ = Π, the anticommutation relation of Ψ and Ψ is identical to (17), but
the Hamiltonian is now

H ′ =
∫
(d3x)Ψ−→D Ψ =

∫
(d3x)Ψ←−D Ψ − i�c

∫
(d3x)Ψ(∂0γ−1)Ψ. (30)

It follows that the usual Heisenberg equations are satisfied. In fact, one has

[H ′, Ψ ] = −γ−→D Ψ = −i�c∂0Ψ , (31)[
H ′, Ψ

]
= Ψ
←−D γ − i�cΨ(∂0γ−1)γ = −i�c∂0Ψ − i�cΨ(∂0γ−1)γ, (32)

then

[H ′, Π ′] = −i�c∂0Π ′. (33)

The equations satisfied by Ψ and Π ′ are those of variables having no explicit time
dependence, which is the rule for canonical variables. On the contrary, expression
(29) shows that Ψ depends explicitly on time since γ−1 does, and equation (32)
is in agreement with this dependence.

However, the HamiltonianH ′ is not Hermitian. In fact, since one has (Ψ−→D Ψ)†

= Ψ
←−D Ψ , it follows that

H ′† =
∫
(d3x)Ψ←−D Ψ = H ′ + i�c

∫
(d3x)Ψ(∂0γ−1)Ψ. (34)

The asymmetry of the equations for Ψ and Ψ is a consequence of this lack of
Hermiticity.

Trouble with the Interaction Picture. A common shortcoming of the two
preceding methods of quantization is the absence of a coherent definition of the
interaction picture. In fact, if this picture was defined, there would be a unitary
operator U , such that the corresponding field variables ψ and _ would be given
by

ψ = UΨU−1 , _ = UΠU−1. (35)
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Moreover, these variables would be free fields so that one would have the relation
_ = i�ψγ0. Such a relation is not compatible with (35) since one has Π =
i�Ψγ−1, γ−1 �= γ0, and since U must be unitary.

In what follows, the quantization is defined in a way such that the preceding
difficulties do not appear. In particular, the interaction picture will be defined,
allowing the construction of the transition probabilities and that of the S matrix.

3.2 A Coherent Method of Quantization

The afore–mentioned problems will be solved by a change of variables eliminating
the derivative coupling. The Lagrangian density (4) can be written under the
form

L =
i�c

2
(
Ψγ−1(∂0Ψ)− (∂0Ψ)γ−1Ψ

)− 1
2
Ψ(−→D +←−D )Ψ. (36)

Let us introduce the new field Θ by the formula Ψ = ΛΘ, where Λ is a matrix
to be determined, which depends on the coordinates. One has

Ψγ−1(∂0Ψ) = Θγ0Λ†γ0γ−1Λ(∂0Θ) +Θγ0Λ†γ0γ−1(∂0Λ)Θ. (37)

The terms containing the time derivatives of Θ and Θ in (36) will be those of the
free Dirac Lagrangian if one has γ0Λ†γ0γ−1Λ = γ0 or, assuming the inversibility
of Λ, if γ0γ−1 = Λ†−1Λ−1. By writing the matrix Λ under the form Λ = MU
where M is Hermitian and positive [34] and U unitary, the preceding equation
becomes

γ0γ−1 = (M−1)2 = I + 1
2h− 1

2h
0µγ0γµ. (38)

If hµν is sufficiently small, this matrix is inversible and defines a unique matrix
M positive–definite [34], while U may be arbitrary. However, to ensure that the
asymptotic states deduced from Θ or Ψ have the same physical interpretation,
it is necessary that U goes to the identity when t→ ±∞. More precisely, we will
impose the condition U = I, by which, when hµν = 0, the field Θ is a free field
as Ψ .

The Lagrangian density takes the following form as a function of Θ:

L = �c

[
i

2
(
Θγ0(∂0Θ)− (∂0Θ)γ0Θ

)
+

i

2
(
ΘΓ k(∂kΘ)− (∂kΘ)Γ kΘ

)
+

1
2
ΘΓΘ

]
,

(39)

where Γ k and Γ are defined by
Γ k = γ0Λ†γ0

[
(1 + 1

2h)γ
k − 1

2h
µkγµ

]
Λ, (40)

Γ = i
(
γ0Λ−1∂0Λ+ Γ kΛ−1∂kΛ

)
− iγ0

(
(∂0Λ†)Λ†−1γ0 + (∂kΛ†)Λ†−1(γ0Γ kγ0)

)
γ0 − 2

mc

�
(1 + 1

2h)γ
0Λ†γ0Λ .

(41)

Let us note the Hermiticity relations

(Γ k)† = γ0Γ kγ0 , Γ † = γ0Γγ0 . (42)
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The field equations, equivalent to those of Ψ and Ψ , are now

i
(
γ0(∂0Θ) + Γ k(∂kΘ)

)
+

1
2
(
Γ + i(∂kΓ k)

)
Θ = 0 , (43)

−i ((∂0Θ)γ0 + (∂kΘ)Γ k
)
+

1
2
Θ
(
Γ − i(∂kΓ k)

)
= 0, (44)

while the current reads

jµ = cΘγ0Λ†γ0
[
(1 + 1

2h)γ
µ − 1

2h
µνγν

]
ΛΘ , (45)

or, more explicitly5,

j0 = cΘγ0Θ, jk = cΘΓ kΘ . (46)

The conjugate momentum ΠΘ of Θ has the same form as in the free–field
case

ΠΘ = 2
∂L
∂Θ̇

= i�Θγ0 . (47)

It follows that the anticommutation relation of Θ and Θ is the usual one

{Θα(x), Θβ(y)}x0=y0 = γ0αβ δ(x− y). (48)

It is equivalent to the anticommutation relation (17) of Ψ and Ψ . The Hamilto-
nian density HΘ now reads

HΘ = − i�c

2
(
ΘΓ k(∂kΘ)− (∂kΘ)Γ kΘ

)− �c

2
ΘΓΘ, (49)

which gives for the total Hamiltonian

HΘ = −�c

2

∫
(d3x)

[
i
(
ΘΓ k(∂kΘ)− (∂kΘ)Γ kΘ

)
+ΘΓΘ

]
, (50)

or, equivalently,

HΘ = −�c

∫
(d3x)Θ

[
iΓ k(∂kΘ) +

1
2
(
Γ + i(∂kΓ k)

)
Θ

]
, (51)

= �c

∫
(d3x)

[
i(∂kΘ)Γ k − 1

2
Θ
(
Γ − i(∂kΓ k)

)]
Θ. (52)

This operator is Hermitian, and from the preceding expressions and, from the
field equations (43) and (44), one checks the Heisenberg equations

[HΘ, Θ] = −i�c∂0Θ ,
[
HΘ, Θ

]
= −i�c∂0Θ , [HΘ, ΠΘ] = −i�c∂0ΠΘ .

(53)

5 The expression of j0 is identical to that of the free–field case. In Appendix B this
property is taken as a condition allowing the introduction of the field Θ in the
framework of the linearized theory of General Relativity.
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The difficulties discussed in Section 3.1 have disappeared. In particular, the basic
variables Θ, Θ and ΠΘ look like variables having no explicit dependence on time.
On the contrary, the variables Ψ , Ψ and Π, initially considered, depend explicitly
on time, since one has

Ψ = ΛΘ , Ψ = Θγ0Λ†γ0 , Π = ΠΘΛ
−1, (54)

and since the matrix Λ generally depends on time.
Let us remark, however, that the Hamiltonian HΘ differs from the Hamilto-

nian H introduced at the beginning in terms of Ψ . It is convenient to consider
H from (23) as the integral of the density

HΨ = Ψ

[−→D +
i�c

2
(∂0γ−1)

]
Ψ, (55)

and HΘ from (51) as the integral of the density

HΘ = �cΘ

[
−iΓ k−→∂k − 1

2
(
Γ + i(∂kΓ k)

)]
Θ. (56)

A rather tedious transformation of the former expression, using the expressions
of γ−1, Γ k, −→D , and the definition of Θ, leads to the formula

HΨ = HΘ +
i�c

2
Θγ0

[
Λ−1(∂0Λ)− (∂0Λ†)Λ†−1

]
Θ. (57)

Conversely, one has

HΘ = HΨ +
i�c

2
Ψγ0

[
Λ†−1(∂0Λ−1)− (∂0Λ†−1)Λ−1

]
Ψ . (58)

With the choice made above of the matrix U , one has Λ = M = M†, with M
defined by (38). The two preceding formulas can then be written

HΨ = HΘ +
i�c

2
Θγ0

[
M−1, ∂0M

]
Θ, (59)

HΘ = HΨ +
i�c

2
Ψγ0

[
M−1, ∂0M−1

]
Ψ. (60)

It is noticeable that the equality HΨ = HΘ is valid at first order with respect to
the hµν ’s. In fact, since ∂0M and ∂0M

−1 are first–order quantities, this approx-
imation is obtained by taking, for the first term in the commutators in (59) and
(60), the zeroth–order approximation of M−1, that is the matrix unity.

4 Interaction Picture and the S–Matrix

With the Lagrangian (39) the interaction picture is easily defined, since the
corresponding conjugate momentum ΠΘ has the same form as that of the free
theory. This allows us to define the evolution operator in that picture, then the
S–matrix.
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4.1 Evolution Operator and Transition Amplitudes

The field in the interaction picture will be denoted by θ. Let us recall that this
operator is obtained from the Heisenberg operator Θ by a unitary transformation
such that the field equation becomes the free one [32]. Accordingly, the evolution
equation of the state vector reads

i�
d

dt
|Φ(t)〉 = HI(t) |Φ(t)〉 , (61)

where, in the absence of derivative coupling, which is the case for the Lagrangian
(39), the Hamiltonian HI(t) is equal to the interaction Hamiltonian expressed
in terms of θ. From the expression (50) of the total Hamiltonian one gets

HI(t) =
∫
(d3x)Hint(x), (62)

with
Hint = − i�c

2
θ(Γ k − γk)(∂kθ) +

i�c

2
(∂kθ)(Γ k − γk)θ − �c

2
θ(Γ + 2

mc

�
)θ. (63)

The evolution operator in the interaction picture is, from (61), the solution
of the following equation together with the initial condition [21] :

i�
d

dt
U(t, t0) = HI(t)U(t, t0) , U(t0, t0) = I . (64)

The perturbation theory is then obtained from the integral equation, equivalent
to (64),

U(t, t0) = I − i

�

∫ t

t0

HI(τ)U(τ, t0)dτ . (65)

In what follows, we are interested in the transition amplitudes to first order
with respect to the hµν ’s. These amplitudes will be obtained from the first–
order approximation with respect to the Hamiltonian HI of the U –operator,
namely

U (1)(t, t0) = − i

�

∫ t

t0

HI(τ)dτ. (66)

By introducing the Hamiltonian density (63) in normal form6, and the initial
and final states of the transition, we will consider the amplitudes

〈Φf |U (1)(t, t0) |Φi〉 = − i

�c

∫ t

t0

(d4x) 〈Φf | : Hint(x) : |Φi〉 , (67)

6 See [21]. To first order this prescription suppresses an infinite contribution, due to
the energy of the vacuum, in the transition amplitudes for the antiparticles only.
It can be seen, therefore, as an expression of the symmetry between particles and
antiparticles.
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where the pair of colons : : denotes as usual the normal product.
The first–order expressions needed for the evaluation of (67) are now derived

from (38) which gives

Λ = M = I − h

4
+

1
4
h0µγ0γµ, (68)

then, from (40) and (41),

Γ k − γk =
1
2
[
h00γk − h0kγ0 − hµkγµ

]
(69)

Γ + 2
mc

�
= −mc

�
h00 +

i

4
(∂kh0µ)(γkγ0γµ − γµγ

0γk). (70)

The corresponding expression for the Hamiltonian density Hint is

Hint = − i�c

4
θ
[
h00γk − h0kγ0 − hµkγµ

]
(∂kθ)

+
i�c

4
(∂kθ)

[
h00γk − h0kγ0 − hµkγµ

]
θ

+
�c

2
θ

[
mc

�
h00 − i

4
(∂kh0µ)(γkγ0γµ − γµγ

0γk)
]
θ . (71)

In Section 5, the expression of the Hamiltonian HI(t) which will be used is the
expression obtained from the space integral of (71) by performing the integration
by parts of the term containing ∂kθ, which gives

HI(t) =
∫
(d3x) θ(x)γ0VG(x)θ(x), (72)

where the operator VG(x), acting on θ(x), is given by

VG(x) = �c

2
γ0
[
mc

�
h00 +

i

4
∂kh0jγ

0(γkγj − γjγk)

+
i

2
(2∂kh0kγ0 + ∂kh

jkγj − ∂kh
00γk)

]
+

i�c

2
γ0
[
2h0kγ0 + hjkγj − h00γk

]
∂k . (73)

This form of the Hamiltonian is closely related to the equation of motion (43) of
the Heisenberg field Θ. In fact, with the help of (69) and (70), one checks that
this equation can be written:(

i�cγµ∂µ −mc2
)
Θ = γ0 VGΘ. (74)

In what follows, the initial and final states, which appear in (67), are some
one–particle or antiparticle states. They are defined from positive or negative
energy solutions χi and χf of the free Dirac equation

(iγµ−→∂µ −mc/�)χk = 0 , χk(iγµ
←−
∂µ +mc/�) = 0 , k = i, f. (75)
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Denoting by |χk〉 the corresponding states, one has then to calculate the matrix
element

〈χf | : θ(x)γ0 VG(x)θ(x) : |χi〉 . (76)

As a free field, the operator θ can be written

θ(x) =
2∑

r=1

∫
(d3p)

[
br(p)χ(+)

p,r (x) + d†r(p)χ
(−)
p,r (x)

]
, (77)

where br(p) and dr(p) are the annihilation operators for the particles or antipar-
ticles, respectively, and χ

(±)
p,r the positive or negative energy solutions of the free

Dirac equation given by [17,21]

χ(+)
p,r (x) =

1
(2π�)3/2

√
mc2

E(p)
u(r)(p)ei(p·x−E(p)t)/�, (78)

χ(−)
p,r (x) =

1
(2π�)3/2

√
mc2

E(p)
v(r)(p)e−i(p·x−E(p)t)/�, (79)

with E(p) = c
√

p2 +m2c2, p = ‖p‖. In terms of these, any solution χ with
positive or negative energy can be written

χ(x) =
∑
r

∫
(d3p)χ(±)

p,r (x)(χ
(±)
p,r , χ) , (80)

the scalar product of two solutions being defined by

(χ1, χ2) =
∫
(d3x)χ1(x)γ0χ2(x) . (81)

From (80) we have the following expression of the one–particle states

|χ〉 =
∑
r

∫
(d3p)(χ(+)

p,r , χ)b
†
r(p) |φ0〉 , (82)

where |φ0〉 is the vacuum state, the correspondence χ→ |χ〉 preserving the scalar
product. Denoting by θ(+) the positive frequency part of θ, this last formula
implies

θ(+)(x) |χ〉 =
∑
r

∫
(d3p)χ(+)

p,r (x)br(p) |χ〉

=
∑
r

∫
(d3p)χ(+)

p,r (x)(χ
(+)
p,r , χ) |φ0〉

= χ(x) |φ0〉 . (83)

The matrix element (76) reduces to

〈χf | θ(+)(x)γ0 VG(x)θ(+)(x) |χi〉 = χf (x)γ0 VG(x)χi(x), (84)
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so that, from (72), the amplitude (67) reads

〈χf |U (1)(t, t0) |χi〉 = − i

�c

∫ t

t0

(d4x)χf (x)γ0 VG(x)χi(x). (85)

This formula will be analyzed in more detail in Section 5.

4.2 S–Matrix

The S–matrix can be defined when the external field vanishes at the limit of
infinite time7. It is obtained from the U operator by taking the limits t0 → −∞
and t → +∞, and the corresponding amplitudes can then be given from (85).
However, it is convenient here to return to the formula (67) in which the Hamil-
tonian density is given by (71). In fact, we want to show that this expression
can be transformed into a covariant one, the expression already given by Gupta
[16].

The initial and final states being the same as in the calculation leading to
(85), formula (67) with the expression (71) of Hint gives, for the first–order
S–matrix,
〈χf |S(1) |χi〉 = −i

∫
(d4x)

{
1
2
χf

[
mc

�
h00 − i

4
(∂kh0µ)(γkγ0γµ − γµγ

0γk)
]
χi

+
i

4
χf
[
hµkγµ + h0kγ0 − h00γk

]
(∂kχi)

− i

4
(∂kχf )

[
hµkγµ + h0kγ0 − h00γk

]
χi

}
. (86)

This expression can be simplified by integrating by parts the term containing
the derivative ∂kh

0µ. This leads to the two terms

i

8
h0µ

[
(∂kχf )(γkγ0γµ − γµγ

0γk)χi + χf (γkγ0γµ − γµγ
0γk)(∂kχi)

]
.

In each of these, by introducing either of the formulas

γkγ0γµ − γµγ
0γk = 2[δ0µγ

k − δkµγ
0 − γµγ

0γk]

= 2[δkµγ
0 − δ0µγ

k + γkγ0γµ] , (87)

one can insert the derivatives in the combinations γk∂kχi or ∂kχfγ
k, yielding

i

4
h0kχfγ

0(←−∂k −−→∂k)χi + i

4
h0µ

[
χf (δ0µ−γµγ0)(γk∂kχi)−(∂kχfγk)(δ0µ−γ0γµ)χi

]
.

(88)

Adding this contribution to the remaining terms in (86), one gets

〈χf |S(1) |χi〉 = −i
∫
(d4x)

{
mc

2�
h00χfχi +

i

4
hµkχfγµ(

−→
∂k −←−∂k)χi

− i

4
hµ0

[
χfγµγ

0(γk∂kχi)− (∂kχfγk)γ0γµχi
]}

. (89)

7 Here, this condition is realized, for example, in the case of a gravitational wave.
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Finally, using the Dirac equation in the last bracket, this expression reduces to

〈χf |S(1) |χi〉 = −i
∫
(d4x)

i

4
hµνχf

(
γµ
−→
∂ν −←−∂νγµ

)
χi. (90)

This formula agrees with the rule given by Gupta [16] : the expression appear-
ing under the integral sign is, up to the sign, obtained from the interaction
Lagrangian L − L0 in (4) by replacing Ψ by χi and Ψ by χf

8. This result is
identical with the one valid in the case of a nonderivative coupling, where the
interaction picture exists directly. More generally, the validity of the rule as-
serted by Gupta, implying the use of the interaction Lagrangian defined by (4)
and the covariant form of the propagators, can be proved at higher orders in the
quantized theory defined in Section 3.

5 Calculation of the Relativistic Phase Shifts
in the Weak–Field Approximation

In this final section we use the tools and the material derived in the previous
sections to make an explicit calculation of the various contributions to a gravita-
tionally induced phase shift in matter–wave interferometry. We restrict ourselves
to one–particle or one–antiparticle states. The application of the formalism to
many–particle states and coherent beams of massive particles of different spins
will be developed in another publication. We assume that the incoming particles
or antiparticles are described by the state vector |χ(t0)〉 = |χi〉 at some time t0
before interaction (t0 can be conveniently taken to be −∞). At a later time t,
this state evolves into |χ(t)〉 which interferes with a reference beam described by
|χref〉 with which it is recombined in the final beam splitter. In practice, |χref〉
is produced by the other arm of the interferometer and in many cases, one will
have |χref〉 ≡ |χi〉 .

We are thus interested in the spinorial wave function for one–(anti)particle
states:

χ(x) = 〈φ0| θ(x) |χ(t)〉 (91)

where θ(x), |χ(t)〉, |φ0〉 are respectively the free–field operator, the one–
(anti)particle and the vacuum state vectors in the interaction representation.
It is easily shown that, when pair creations are neglected, this expression is
equivalent to the Heisenberg field amplitude 〈0, in|Θ(x) |Φ〉.

The interference signal itself is given by the projection:∫
d3xχ†ref(x)χ(x) =

∫
d3x 〈χref | θ†(x) |φ0〉 〈φ0| θ(x) |χ(t)〉

= 〈χref |U(t, t0) |χ(t0)〉 (92)
8 The contribution of the term (h/2)L0 of (4) vanishes in the first order considered
here, since χi and χf are solutions of the free Dirac equation. But this property is
limited to the first order.
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where the space integral is over some detection volume. More generally one
should consider a detection hypersurface σ(x) and the projection:∫

σ

dσµ χref(x)γµχ(x) =
∫
σ

dσµ 〈χref | θ(x) |φ0〉 γµ 〈φ0| θ(x) |χ(t)〉 . (93)

In this paper, we shall limit ourselves to the calculation of the amplitude:

〈χref |χ(t)〉 = 〈χref |U(t, t0) |χ(t0)〉 . (94)

and take the phase of this complex amplitude as the phase contribution of the
perturbing interaction. The resulting spinor (91) will also be derived using two
different methods: first, in configuration space and second, in the momentum
representation.

5.1 Calculation in Configuration Space

The evolution equation of the state vector in the interaction picture is

i�
d

dt
|χ(t)〉 = HI(t) |χ(t)〉 , (95)

where the Hamiltonian HI(t) is

HI(t) =
∫

d3x θ†(x)VG(x)θ(x) , (96)

and where the operator VG(x), acting on the field operator θ(x), is given to first
order by (73)

VG =
1
2
mc2γ0h00 +

i�c

8
∂kh0j(γkγj − γjγk)

+
i�c

4
γ0(2∂kh0kγ0 + ∂kh

jkγj − ∂kh
00γk)

+
i�c

2
γ0
[
2h0kγ0 + hjkγj − h00γk

]
∂k (97)

that we shall write:

VG(x) = A(x) +
i�

2
∂jB

j(x) + i�Bj(x)∂j = A(x) +
1
2
{
i�∂j , B

j(x)
}
+ (98)

with:

A(x) =
1
2
mc2γ0h00 +

�c

4
σkj∂kh0j

Bj(x) =
c

2
γ0
[
2h0jγ0 + hkjγk − h00γj

]
. (99)

From equation (91) we check that the evolution of the one-(anti)particle spinor
is governed by the equation:

i�∂tχ = −i�cγ0γj∂jχ+mc2γ0χ+ VGχ (100)
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to which we may add terms corresponding to diagonal magnetic dipole and
off–diagonal electric dipole interactions [10,12]. This equation has been used in
references [10] and [12] to discuss all the terms that lead to a phase shift in an
interferometer.

To obtain the corresponding amplitude, we can start directly from the inte-
gral form of (95):

|χ(t)〉 = |χ(t0)〉 − i

�c

∫ t

t0

d4x′θ†(x′)VG(x′)θ(x′) |χ(t′)〉 (101)

So that, to first order:

〈χref |χ(1)(t)〉 = 〈χref |U (1)(t, t0) |χi〉

= − i

�c

∫ t

t0

d4x′χ†ref(x
′)VG(x′)χi(x′)

= − i

�c

∫ t

t0

d4x

{
χ†ref

[
A(x) +

i�

2
∂jB

j(x) + i�Bj(x)∂j

]
χi

}
=
∫ t

t0

d4x

{
χ†ref

[
h00

2c
γ0∂t + h ·∇− 1

2
α ·
⇒
h ·∇

+
i

4
Σ ·∇× h− 1

4

(
∇h00 + ∇ ·

⇒
h

)
·α+

1
2
∇ · h

]
χi

}
(102)

which follows also from Gupta’s form. We have used the definitions:

α = γ0γ =
(
0 σ
σ 0

)
,Σ =

(
σ 0
0 σ

)
,h = {h0k},

⇒
h = {hij} . (103)

The calculation of the spinor itself, by a stationary phase method in configuration
space, is outlined in Appendix C.

In equation (102), the first three terms lead to the familiar phase shifts of the
Linet–Tourrenc formula [23], the fourth term is the spin–rotation interaction and
the last two terms ensure hermiticity. But, because of the Dirac matrices, the
interpretation of the various terms in configuration space is not so transparent
and, in previous works non–relativistic limits have been taken either directly as
in our own work [12] or through a Foldy–Wouthuysen transformation as in [13]
in the case of inertial fields, to put equations (100) and (102) in a form where
the significance of the terms is more obvious.

In this paper, we may as well take advantage of the flat Minkowski space–time
and, therefore, we will use rather the momentum representation in the following.
As we shall see, the interpretation of the terms is then much easier, even in their
relativistic form.

5.2 Calculation in the Momentum Representation

The free–field operator θ is written as before as:

θ(x) =
2∑

r=1

∫
d3p

[
br(p)χ(+)

p,r (x) + d†r(p)χ
(−)
p,r (x)

]
, (104)
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where br(p) and dr(p) are the annihilation operators for the particles or antipar-
ticles, respectively, and χ

(±)
p,r are the positive or negative energy solutions of the

free Dirac equation given by (78) and (79).
Let us introduce the Fourier transforms Ã(k, t), B̃j(k, t), h̃µν(k):

A(x) =
1

(2π)3/2

∫
d3k Ã(k, t)eik·x (105)

Bj(x) =
1

(2π)3/2

∫
d3k B̃j(k, t)eik·x (106)

hµν(x) =
1

(2π)3/2

∫
d3k h̃µν(k, t)eik·x (107)

VG(x)eip·x/� =
1

(2π)3/2

∫
d3k ṼG(k,p, t)eik·xeip·x/� (108)

ṼG(k,p, t) = Ã(k, t)− B̃(k, t) · (p+ 1
2�k

)
. (109)

Let us expand χ(x), χref(x) and χi(x) in plane waves using the expansions of
θ(±)(x) and θ(±)(x). For particles, the output spinor is:

χ(x) = 〈φ0| θ(+)(x) |χ(t)〉

= 〈φ0|
2∑

r=1

∫
d3p br(p)χ(+)

p,r (x) |χ(t)〉

=
1

(2π�)3/2

2∑
r=1

∫
d3p

√
mc2

E(p)
u(r)(p)ei(p·x−E(p)t)/�〈1p,r |χ(t)〉 (110)

with |1p,r〉 = b†r(p)|φ0〉 and with, using again (101),

〈χref |χ(t)〉 = 〈χref |U(t, t0) |χi〉

= 〈χref |χi〉 − i

�c

∫ t

t0

d4x′χ†ref(x
′)VG(x′)χi(x′) (111)

= 〈χref |χi〉 − i

�

1
(2π�)3

∑
r,r′

∫ t

t0

dt′
∫

d3x′
∫

d3p d3p′〈χref |1p,r〉√
mc2

E(p)
u(r)†(p)e−i(p.x

′−E(p)t′)/�
1

(2π)3/2

∫
d3k ṼG(k,p′, t′)eik·x′

√
mc2

E(p′)
u(r

′)(p′)ei(p
′·x′−E(p′)t′)/�〈1p′,r′ |χi〉 (112)

= 〈χref |χi〉 − i

�

∑
r,r′

∫ t

t0

dt′
∫

d3p

∫
d3k

(2π)3/2
〈χref |1p+�k,r〉√

mc2

E(p+ �k)

√
mc2

E(p)
u(r)†(p+ �k)ṼG(k,p, t′)u(r′)(p)

ei[E(p+�k)−E(p)]t′/�〈1p,r′ |χ(t′)〉 (113)



420 Ch.J. Bordé, J.–C. Houard, and A. Karasiewicz

and similar expressions for antiparticles. In many cases |χi〉 and |χref〉 can be
conveniently taken as plane waves, but it is usually more interesting to consider
wave packets. Replacing |χref〉 by |1p,r〉, we check that the momentum represen-
tation 〈1p,r |χ(t)〉 of χ(x) satisfies:

i�∂t〈φ0|br(p)|χ(t)〉 =
∑
r′

∫
d3k

(2π)3/2

√
mc2

E(p)

√
mc2

E(p− �k)

u(r)†(p)ṼG(k,p− �k, t)u(r
′)(p− �k)

ei[E(p)−E(p−�k)]t/�〈φ0|br′(p−�k)|χ(t)〉. (114)
This equation is, in momentum representation, the analogous of equation (100)
in configuration space and we shall give its first–order solution later. It leads to
a discrete set of coupled equations for a fixed or negligible recoil momentum. We
illustrate below, in the case of the scattering amplitude, how the matrix element,
which appears in the second member of (113) and (114) can be evaluated.

To first order, the scattering amplitude (113) is:

〈χ ref |χ(1)(t)〉
= 〈χref |U (1)(t, t0)|χi〉

= − i

�

∑
r,r′

∫ t

t0

dt′
∫

d3p

∫
d3k

(2π)3/2
〈χref |1p+�k,r〉

√
mc2

E(p+ �k)

√
mc2

E(p)

u(r)†(p+ �k)ṼG(k,p, t′)u(r′)(p)

ei[E(p+�k)−E(p)]t′/�〈1p,r′ |χi〉 . (115)

The next step takes benefit from the smallness of �k/mc or of �kc/E(p) to
expand the various quantities in this expression to first order in these parameters.
The energy E(p+ �k) can be expanded in a Taylor series:

E(p+ �k) = E(p) +
�k · pc2
E(p)

+
(�k)2c2

2E(p)
+ . . . = E(p) + �k · v + �δ + . . . ,

(116)

where δ is the recoil shift. From the general transformation law of spinors in
Lorentz boosts (see for example [26]):

u(p) =
[
cosh

(ϕ
2

)
+ n̂ ·α sinh

(ϕ
2

)]
u(0) , (117)

where n̂ is the unit vector along p, and tanhϕ = |p| /(γmc), we derive the
following infinitesimal transformation for spinors:

u(p+ δp) =
{
1 +

n̂ ·α
2

tanhϕ
n̂ · δp

p
+

1
2
sinhϕ

[
α · δp

p
− (n̂ ·α) n̂ · δp

p

]
+ i sinh2

(ϕ
2

) n̂× δp

p
·Σ
}
u(p) (118)
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we have to first order in �k/mc:

u†(p+ �k) = u†(p){1 + 1
2γ

�k

mc
·α− i

2(γ + 1)
p

mc
× �k

mc
·Σ} , (119)

where γ = 1/
√
1− β2, k = k‖ + γk⊥, the indices ‖ and ⊥ designate vector

parts respectively parallel and perpendicular to p. The term proportional to α
represents a boost (velocity change) and the term proportional to Σ a rotation
(Thomas precession).

Rather than to calculate directly√
mc2

E(p+ �k)

√
mc2

E(p)
u(r)†(p+ �k)ṼG(k,p, t)u(r′)(p) (120)

it is simpler to calculate first the matrix element:√
mc2

E(p+ 1
2�k)

√
mc2

E(p− 1
2�k)

u(r)†(p+ 1
2�k)ṼG(k,p− 1

2�k, t)u(r
′)(p− 1

2�k)

=
mc2

E(p)
u(r)†(p+ 1

2�k)
[
Ã(k, t)− B̃(k, t) · p

]
u(r

′)(p− 1
2�k) (121)

=
mc2

E(p)
u(r)†(p)

[
Ã(k, t)− B̃(k, t) · p

]
u(r

′)(p)

+
1
4γ

mc2

E(p)
u(r)†(p)

{
�k

mc
·α, Ã(k, t)− B̃(k, t) · p

}
−
u(r

′)(p)

− i

4(γ + 1)
mc2

E(p)
u(r)†(p)

{
p

mc
× �k

mc
·Σ, Ã(k, t)− B̃(k, t) · p

}
+
u(r

′)(p) ,

(122)

where {A,B}± designate (anti)commutators. The first line gives:

mc2

E(p)
u(r)†(p)

[
Ã(k, t)− B̃(k, t) · p

]
u(r

′)(p)

=

[
E(p)h̃00

2
− cp · h̃+

c2

2E(p)
p ·
⇒̃
h · p

]
δrr′

− i�c

4γ
(k × h̃) · w(r)†(σ⊥ + γσ‖)w(r′)

=
c2

2E(p)
pµh̃µνp

νδrr′ − i�c

4γ
(k × h̃) · w(r)†aw(r′) , (123)

where w(r) are Pauli two-component spinors corresponding either to helicity
eigenvalues or to the two values of the z-component of the spin in the rest
frame, and where

a = (σ⊥ + γσ‖) (124)



422 Ch.J. Bordé, J.–C. Houard, and A. Karasiewicz

is the spatial part of the Thomas–Pauli–Lubanski 4–vector operator [30,31]. The
second line gives the term:

1
4γ

mc2

E(p)
u(r)†(p)

{
�k

mc
·α, Ã(k, t)− B̃(k, t) · p

}
−
u(r

′)(p)

=
i�c2

4E(p)γ
(k ×

⇒̃
h · p) · w(r)†aw(r′) (125)

The last line gives the Thomas precession terms:

− i

4(γ + 1)
mc2

E(p)
u(r)†(p)

{
p

mc
× �k

mc
·Σ , Ã(k, t)−B̃(k, t) · p

}
+
u(r

′)(p)

=
i�h̃00

4m(γ + 1)
(k × p) · w(r)†aw(r′) − i�c

2m(γ + 1)
p · h̃
E(p)

(k × p) · w(r)†aw(r′)

+
i�

4E2(p)m(γ + 1)

[
(k × p) ·

⇒̃
h · p

]
p · w(r)†aw(r′) (126)

The last line can be rewritten to yield:√
mc2

E(p+ 1
2�k)

√
mc2

E(p− 1
2�k)

u(r)†(p+ 1
2�k)ṼG(k,p− 1

2�k, t)u(r
′)(p− 1

2�k)

=
c2

2E(p)
pµh̃µνp

νδrr′ − i�c

4γ

[
k ×

(
h̃−

⇒̃
h · pc

E(p)

)]
· w(r)†aw(r′)

+
i�

2m(γ + 1)

[
(k × p)c

2pµh̃µνp
ν

2E2(p)

]
· w(r)†aw(r′) (127)

If we replace now p by p + �k/2 in order to calculate (115) this introduces
the additional terms:�c2k · p

4E(p)

h̃00 − c2p ·
⇒̃
h · p

E2(p)

− c
�k

2
·
h̃− ⇒̃h · pc

E(p)

 δrr′ (128)

If we introduce the 4-vector κµ:

κ0c = k · v (129)
κ = k (130)

which corresponds to the energy–momentum 4–vector exchanged during the in-
teraction, these terms can be rewritten:

c2

2E(p)

{
−pµh̃µνpν �κ0c

E(p)
+

�κµ

2
h̃µνp

ν

}
δrr′ (131)
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Our final result is thus, for the scattering amplitude:

〈χref |U (1)(t, t0) |χ(t0)〉

= − i

�

∑
r,r′

∫ t

t0

dt′
∫
(d3p)

∫
d3k

(2π)3/2
〈χref | 1p+�k,r〉{

c2

2E(p)
(pµ + �κµ) h̃µνpν

(
1− �κ0c

2E(p)

)
δrr′

+
i�

2m(γ + 1)

[
(k × p)c

2pµh̃µνp
ν

2E2(p)

]
· w(r)†aw(r′)

− i�c

4γ

[
k ×

(
h̃−

⇒̃
h · pc

E(p)

)]
· w(r)†aw(r′)

}
ei[E(p+�k)−E(p)]t′/�〈1p,r′ |χi〉 . (132)

To obtain the outgoing spinor, one can replace 〈χref | by 〈φ0| θ(x) in the previous
expression, which gives this spinor as a sum of outgoing plane–wave spinors:

χ(x) =χi(x)− i

�

1
(2π�)3/2

∑
r,r′

∫ t

t0

dt′
∫

d3p

∫
d3k

(2π)3/2

√
mc2

E(p)
u(r)(p)ei[p.x−E(p)t/�]

{
c2

2E(p)
pµh̃µν (pν − �κν)

(
1 +

�κ0c

2E(p)

)
δrr′

+
i�

2m(γ + 1)

[
(k × p)c

2pµh̃µνp
ν

2E2(p)

]
· w(r)†aw(r′)

− i�c

4γ

[
k×
(̃
h−
⇒̃
h · pc

E(p)

)]
·w(r)†aw(r′)

}
ei[E(p)−E(p−�k)]t′/�〈1p−�k,r′ |χi〉

(133)

in which an explicit phase factor is associated with each outgoing plane wave
component and which can also be obtained directly from the first–order solution
of equation (114).

One can also perform the calculation presented in Appendix D, which gives
this spinor in the form of Dirac matrices multiplying the initial spinor plane
wave components

χ(x) = χi(x)− i

�

1
(2π�)3/2

∑
r′

∫ t

t0

dt′
∫
(d3p)

∫
d3k

(2π)3/2
c2

2E(p){
(pµ + �κµ) h̃µνpν

(
1− �κ0c

E(p)

)
− i�

2
κρσ

ρν h̃µνp
µ

}
(134)

eik.xei[E(p+�k)−E(p)](t′−t)/�

√
mc2

E(p)
u(r

′)(p)ei(p·x−E(p)t)/�〈1p,r′ |χi〉 .

In this formula, the integral over p can be calculated by assuming that the initial
wave packet has a very narrow width in momentum space around a central value
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p0. The initial wave packet χi(x) can then be factorized. If this approximation
is not sufficient an expansion of the wave packet around p0 can be used [22].
The k integral can be performed by turning each term linear in k into a spatial
derivative and the result of Appendix C is recovered for the spinor in config-
uration space. Finally the time integral can be worked out in many cases and
expresses energy conservation [22].

For the scattering amplitude, the comparison of equation (132) with equation
(102) shows new terms directly related to the momentum exchange: a generalized
Thomas precession and a generalized spin–gravitation interaction. To illustrate
how this phase shift calculation is done from equation (132) we shall rewrite this
equation without the terms that obviously do not contribute to the phase and use
expression (116) for the energy difference, in which we neglect the recoil shift δ

δϕ = −1
�

∑
r,r′

∫ t

t0

dt′
∫
(d3p)α∗ref(p)αi(p)β∗r,refβr′,i

{
c2

2E(p)
pµhµν(x0 + vt′, t′)pνδrr′

+
�

2m(γ + 1)

[
c2pµ∇hµν(x0 + vt′, t′)pν

2E2(p)
× p
]
· w(r)†aw(r′) (135)

− �c

4γ

[
∇×

(
h(x0 + vt′, t′)−

⇒
h(x0 + vt′, t′) · pc

E(p)

)]
· w(r)†aw(r′)

}
,

where we also made explicit the centers of the wave packets and their polariza-
tion:

〈1p,r |χi〉 = e−ip.x0/�αi(p)βr,i, 〈χref | 1p+�k,r〉 - ei(p+�k)·x0/�α∗ref(p)β
∗
r,ref (136)

(the assumption that the wave packet is broad enough for α∗ref(p+�k) - α∗ref(p)
has been made).

If we assume, for simplicity, that the reference wave packet is identical to
the unperturbed wave packet: αref (p)βr,ref ≡ αi(p)βr,i and that they are very
narrow in momentum space around a central value p, the phase simplifies to:

δϕ = −1
�

∫ t

t0

dt′
{

c2

2E(p)
pµhµν(x0 + vt′, t′)pν

+
γ

m(γ + 1)

[
c2pµ∇hµν(x0 + vt′, t′)pν

2E2(p)
× p
]
· s

− c

2

[
∇×

(
h(x0 + vt′, t′)−

⇒
h(x0 + vt′, t′) · pc

E(p)

)]
· s
}

, (137)
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where s is the mean spin vector9

s =
∑
r,r′

β∗r,iβr′,i�w
(r)†aw(r′)/2γ (139)

In fact the phase calculation is usually more involved since the previous for-
mula applies only to the case of straight unperturbed trajectories. In practice
however, one cannot always ignore the fact that, when calculating the phase
to first–order for a given term of the Hamiltonian, the motion of the particles
is affected by other terms. One example is the calculation of the gravitational
shift within the atom beam splitters, in which one cannot ignore the important
effects of the diffracting electromagnetic field on the trajectories of the particles
[10,38–40]. Gravitational phase shifts have to be calculated along these trajecto-
ries. Another example is the gravity field itself, which, on earth, gives parabolic
trajectories for atoms. The phase shift for the other terms in equation (137) has
to be calculated along these parabolas. A convenient way to achieve these calcu-
lations is to replace x0 + vt′ and v in equation (137) by the classical trajectory
{x(t′),v(t′)} obtained in the ABCD formalism developed in references [22,37].

Expression (137) displays all the terms which may lead to a gravitational
phase shift in a matter–wave interferometer. They are summarized in Table 1
where one finds successively:

• the terms involving h00 lead to the gravitational shift (h00 = −2 g · r/c2),
to shifts involving higher derivatives of the gravitational potential and to
the analog of the Thomas precession (spin–orbit coupling corrected by the
Thomas factor).
• the terms which involve h = {h0k}, give the Sagnac effect in a rotating
frame (h = Ω×r/c), the spin–rotation coupling and a relativistic correction
(analogous to the Thomas term for h00). They describe also the Lense–
Thirring effects coming from inertial frame–dragging by a massive rotating
body, which is a source for h.

• the other terms, which involve the tensor
⇒
h = {hij} describe genuine Gen-

eral Relativity effects such as the effect of gravitational waves and de Sitter
geodetic precession (which also includes the Thomas term for h00).

Our expressions are valid for spins 0 and 1/2 and may be conjectured to be
valid for arbitrary spin if σ/2 is replaced by the corresponding spin operator S.

The reader will find calculations of the phases corresponding to these vari-
ous terms in references [3,7,10,35,41–44]. In these calculations, one should never
9 More generally, if we use ai(p, r) instead of αi(p)βr,i, the mean spin vector should
be written:

s = 〈χi| �

2

∫
(d3x )θ†(x)Σθ(x) |χi〉 =

∑
r,r′

∫
(d3p)a∗

i (p, r)ai(p, r′)�w(r)†aw(r
′)/2γ

(138)
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forget that the external field hµν acts not only on the atoms but also on other
components of the experiments, such as mirrors and laser beams and that, de-
pending on the chosen gauge, additional contributions may enter in the final
expression of the phase which should, of course, be gauge independent.

In present experiments on the earth gravity measurements, the relative sensi-
tivity is δg/g - 3.10−9 after 60 seconds and the absolute accuracy 5.10−9[6,35].
For rotations, the best sensitivity achieved up to now is 6.10−10rad.s−1Hz−1/2[36]
but these numbers are expected to improve rapidly in the near future, espe-
cially in space experiments, in which general relativistic effects should become
detectable. An accurate measurement of the effect of gravitation and inertia on
antimatter also appears as a possibility already discussed in reference [47] with a
transmission–grating interferometer, although we believe that an antiatom inter-
ferometer using laser beams for the antihydrogen beam splitters (Ramsey–Bordé
interferometers) would be better suited for such an experiment. The formalism
introduced in this paper to deal with antiatoms should be useful to discuss such
experiments, especially when coherent beams of antihydrogen will be produced
either by Bose–Einstein condensation and/or by stimulated bosonic amplifica-
tion.

5.3 Analogy with the Electromagnetic Interaction

The formulas that we have derived for the transition amplitude and for the
ougoing spinor strongly suggest analogies with the electromagnetic field case.
To emphasize these analogies, let us introduce the following pseudo–potential
4–vector 10

Ãµ =
1
2
h̃µνpν , (143)

then the Linet–Tourrenc term, which appears also in the generalized Thomas
precession is simply

c2

2E(p)
pµh̃

µνpν =
1
γ
uµÃ

µ , (144)

where uµ is the 4–velocity pµ/m.
The corresponding field

Φ̃µν = −i
(
κµÃν − κνÃµ

)
= (Ẽ/c, B̃) (145)

10 More rigorously, one should introduce [33]
Ãµ =

1
2
h̃µν(pν + �κν/2) , (140)

which stems directly from a compact form of the interaction Hamiltonian
VG =

c

4
αµhµνp

ν + h.c. =
c

4
{αµhµν , p

ν}+ (141)

with p0 = −αjpj + γ0mc and pj = i�∂j (142)
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appears in the outgoing spinor (135) through

− i�

2
κρσ

ρν h̃µνp
µ =

�

2
σρνΦ̃ρν

and in the generalized spin-gravitation interaction term

− i�c

4γ

[
k ×

(
h̃−

⇒̃
h · pc

E(p)

)]
· w(r)†aw(r′) = − �c2

2γE(p)
w(r)†aw(r′) · B̃ . (146)

This new correspondence between the gravitational interaction and the electro-
magnetic interaction generalizes the so–called gravitoelectric and gravitomag-
netic interactions introduced by de Witt [45] and Papini [46].

Appendix A: Dirac Equation in Curved Space–Time

For a given space–time manifold, together with its metric tensor gµν , the La-
grangian density of the Dirac field reads [14]

L =
�c

2
√−g Ψ

[
iγα
−→D α −mc/�

]
Ψ +

�c

2
√−g Ψ

[
−i←−D αγ

α −mc/�

]
Ψ, (147)

with−→D α = eα̂
µ

[−→
∂ µ − i

4
eν
β̂
∇µeγ̂νσ

βγ

]
,
←−D α =

[←−
∂ µ +

i

4
eν
β̂
∇µeγ̂νσ

βγ

]
eα̂

µ .

(148)

In these formulas the eα̂’s are four-vector fields constituting an orthonormal
tetrad (tetrad indices have a hat), that is satisfying the relations

gµν eα̂
µeβ̂

ν = ηαβ , (149)

with (ηαβ) = diag(+1,−1,−1,−1). A change of tetrad is possible according to
the formula

e′α̂
µ = Λβ

αeβ̂
µ, (150)

where Λ is a matrix of the Lorentz group defined at each point of the spacetime
manifold. In such a change the Lagrangian density (147) is left invariant if the
Dirac field is correspondingly transformed according to the law

Ψ ′ = S(Λ)−1Ψ, (151)

the matrix S(Λ) being the usual transformation matrix under a Lorentz trans-
formation of a Dirac spinor [17]. For an infinitesimal transformation

Λαβ = ηαβ + εαβ , εαβ = −εβα, (152)

one has

S(Λ)−1 = I +
i

4
εαβσ

αβ . (153)
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The field equations read[
iγα
−→D α −mc/�

]
Ψ = 0 , Ψ

[
−i←−D αγ

α −mc/�

]
= 0. (154)

With the invariance of L under the phase transformations Ψ → Ψe−iα, Ψ →
Ψeiα, is associated the current density

jµ =
√−g Jµ , Jµ = ceµα̂ ΨγαΨ, (155)

where Jµ is a four-vector invariant under a change of tetrad, and one has the
conservation relation in either one of the two equivalent forms

∂µj
µ = 0 , ∇µJ

µ = 0 . (156)

Appendix B: Weak-Field Approximation

It is now assumed that space-time admits a coordinate system (xµ) in which the
metric tensor takes the form

gµν = ηµν + hµν , |hµν | � 1. (157)

According to that hypothesis, the hµν ’s will be considered as first-order quan-
tities, and the subsequent calculations will be valid at this order. To determine
the corresponding form of the Lagrangian, it suffices to construct the tetrads
associated with (157). By putting eα̂µ = ηαµ + fαµ, where fαµ is of the first
order, one obtains from (149) and (157),

fαβ + fβα = hαβ . (158)

The general solution of these equations is of the form

fαβ = 1
2hαβ + εαβ , (159)

in which the εαβ ’s are first-order quantities only restricted by the antisymmetry
condition εαβ = −εβα. One then has

eα̂µ = ηαµ + 1
2hαµ + εαµ. (160)

Introducing the free Dirac Lagrangian (2) and the associated stress-energy tensor
(3), the Lagrangian density (147) calculated at the first order and corresponding
to (160) reads11

L = L0 − 1
2h

µνTµν +
i�c

2
εµνΨ(γµ

−→
∂ ν −←−∂ νγµ)Ψ − �c

8
∂µενρΨ(γµσνρ + σνργµ)Ψ.

(161)
11 The indices of hµν and εµν are raised with the help of ηµν .
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The corresponding field equations are the following

0 = [(1 + 1
2h)(iγ

µ−→∂ µ −mc/�)− i

2
hµνγµ

−→
∂ ν

+
i

4
(∂µh− ∂νh

ν
µ)γµ + iεµνγµ

−→
∂ ν − 1

4
∂µενργ

µσνρ]Ψ , (162)

0 = Ψ [(−iγµ←−∂ µ −mc/�)(1 + 1
2h) +

i

2
←−
∂ νγµh

µν

− i

4
(∂µh− ∂νh

ν
µ)γµ − i

←−
∂ νγµε

µν − 1
4
∂µενρσ

νργµ] . (163)

The terms depending on hµν are identical to those appearing in (5) and (6). The
same is true for the current density, which is now

jµ = cΨ [γµ + 1
2hγ

µ − 1
2h

µνγν − εµνγν ]Ψ. (164)

Considered independently of the context, the equations (162) and (163) are
invariant under the transformations of the Poincaré group provided that the
hµν ’s and the εµν ’s are transformed like the components of a second–rank tensor,
and Ψ by the corresponding transformation law of a spinor. However, the weak–
field character of hµν is not conserved by any finite Lorentz transformation except
by the rotations. Moreover, the hµν ’s being the basic quantities, the condition
that the εµν ’s are of first order is naturally interpreted by assuming that these
latter are some linear functions of the former, that is one has

εµν = αµνρσh
ρσ. (165)

Such a relation is not compatible with the general tensor transformation law,
on account of the symmetric or antisymmetric character of hµν or εµν , but can
be made compatible with the rotations by a suitable choice of the coefficients
αµνρσ.

The rotational invariance of (165) is equivalent to the relations

αµ′ν′ρ′σ′
= Rµ

µ′
Rν

ν′
Rρ

ρ′
Rσ

σ′
αµνρσ, (166)

where R can be any rotation matrix. The corresponding solutions are given by12

α0i0j = 1
2Aδij , α0ijk = 0 , αjk0i = 1

2Bεijk , αijkl = 0 , (167)

where A and B are some arbitrary parameters. If, in addition, the invariance
under parity is postulated, one has to take B = 0, giving

ε0i = −εi0 = −Ah0i , εij = 0 , (168)

then, instead of (160),

e0̂0 = 1 + 1
2h00 , e0̂i = ( 12 −A)h0i , êi0 = ( 12 +A)h0i , êij = ηij + 1

2hij .

(169)

12 As usual, the latin indices can take the values 1,2 or 3, and εijk is the completely
antisymmetric symbol.
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In particular the choice A = 0 corresponds to the tetrad

eα̂µ = ηαµ + 1
2hαµ , (170)

which we call the standard tetrad associated with hµν . The corresponding La-
grangian is identical to the Lagrangian (1), therefore the equations (5) and (6)
are recovered from (162) and (163) by letting εµν = 0. We will continue to
designate the corresponding field by Ψ .

If we write explicitly the spinorial connection in this weak-field approximation

− i

4
eν
β̂
∇µeγ̂νσ

βγ =
i

4
σλµ∂λhµν (171)

the equation for Ψ can also be written in a simple form, analogous to the elec-
tromagnetic case, and which will find an interpretation in terms of gauge fields
in the flat space–time approach of the main text

iγν(−→∂ ν +
i

4
σλµ∂λhµν − 1

2
hν

α−→∂ α)Ψ − mc

�
Ψ = 0. (172)

Another choice of tetrad can be made in relation with the expression of the
vector current. From (155) written in the weak–field case, one has in general

jµ/c = (1 + 1
2h)ΨγµΨ − 1

2h
µνΨγνΨ − εµνΨγνΨ, (173)

and then
j0/c = (1 + 1

2h)Ψγ0Ψ − ( 12h
0ν + ε0ν)ΨγνΨ. (174)

This quantity will be proportional to the usual density Ψγ0Ψ if one has ε0i =
− 1

2h
0i, which is obtained with the choice A = 1

2 . Denoting by Ψ ′ the correspond-
ing field, one has13

j0 = c(1 + 1
2h

i
i)Ψ ′γ0Ψ ′ . (175)

It is then possible to introduce the new field Θ by [12]

Θ = (1 + 1
2h

i
i)

1
2Ψ ′ - (1 + 1

4h
i
i)Ψ ′ , (176)

such that
j0 = cΘγ0Θ, (177)

as in the free–field case. The change of field Ψ → Ψ ′ corresponds to a change
of tetrad as defined above, so that, from (160) and (170), one has the formulas
(151), (152) and (153) written with an infinitesimal parameter ε equal to −ε
that is such that εij = 0, ε0i = −εi0 = 1

2h0i. This gives

Ψ ′ = (I − 1
4h0iγ

0γi)Ψ, (178)

then, from (176),
Θ = (I + 1

4h− 1
4h0µγ

0γµ)Ψ. (179)

The field Θ is identical to the field introduced in Section 3.2 for the purpose of
defining the quantization and the interaction picture.
13 Let us note that, in the expression of the conserved charge corresponding to (175),

the volume element (1+ 1
2h

i
i)d3x is, in the first–order approximation, the 3–volume

associated with the spatial metric defined from the coordinate system (xµ)[20].



Relativistic Phase Shifts for Dirac Particles 433

Appendix C: A Stationary Phase Calculation

The outgoing spinor can be calculated directly in configuration space with the
help of a stationary phase formula. In the particle case, from the definition

χ(x) = 〈φ0|θ(+)(x)|χ(t)〉 (180)

and the integral equation

|χ(t)〉 = |χ(t0)〉 − i

�c

∫ t

t0

(d4x′)θ(+)†(x′)VG(x′)θ(+)(x′)|χ(t′)〉 (181)

one can derive, to first order, the expression

χ(x) = χi(x)− i

�c

∫ t

t0

(d4x′)〈φ0|θ(+)(x)θ(+)(x′)|φ0〉γ0VG(x′)〈φ0|θ(+)(x′)|χi〉,
(182)

which, with the help of standard formulas, can be transformed into

χ(x) = χi(x)− 1
�c

∫ t

t0

d4x′S(+)(x− x′)γ0VG(x′)χi(x′) (183)

= χi(x)− i

�c

∑
r

∫
d3pχ(+)

p,r (x)
∫ t

t0

(d4x′)χ(+)
p,r (x′)γ0VG(x′)χi(x′). (184)

By introducing (85), one finds

χ(x) = χi(x)− i

�c

∑
r

∫
d3pχ(+)

p,r (x) i�c〈χ(+)
p,r |U (1)(t, t0)|χi〉. (185)

In this last expression the matrix element can be submitted to the same trans-
formations as those leading from (86) to (90), yielding

χ(x) = χi(x)−i
∑
r

∫
d3pχ(+)

p,r (x)
∫ t

t0

d4x′
i

4
hµν(x′)χ(+)

p,r (x′)
(
γµ
−→
∂′ν −

←−
∂′νγµ

)
χi(x′)

= χi(x)− i

4

∫ t

t0

d4x′ hµν(x′)S(+)(x− x′)
(
γµ
−→
∂′ν −

←−
∂′νγµ

)
χi(x′). (186)

By introducing the expression

S(+)(x− x′) =
ic

2(2π�)3

∫
d3p

E(p)
(γµpµ +mc)e−ip(x−x

′)/�

p0=+E(p)/c
, (187)

one finally gets for a plane wave with the momentum p0

χ(x) = χi(x)− ic2

8�

∫ t

t0

dt′
∫

d3x′hµν(x′)×

× 1
(2π�)3

∫
d3p

E(p)
(p+ p0)ν(γρpρ +mc)e−ip(x−x

′)/�γµχi(x′) . (188)
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The elementary stationary phase formula14 applied successively to the inte-
gral over p, then to the integral over x′, yields the Linet–Tourrenc result [23],
namely :

χ(x) =
[
1− ic2

2�
p0µp0ν
E(−→p0 )

∫ t

t0

dt′hµν(x− v0(t− t′), t′)
]
χi(x) , v0 =

p0c
2

E(p0)
.

(189)

This expression is the beginning of an asymptotic expansion in powers of � of
the form

χ(x) =
[
1− ic2

2�

∫ t

t0

dt′ F (x− v0(t− t′), t′)
]
χi(x), (190)

in which F is defined by an expansion in integer powers of � whose first term
corresponds to the Linet–Tourrenc formula. This expansion can be obtained from
a generalization of the stationary phase formula given by Hörmander [25]. The
application of this general formula to the two integrals appearing in (188) yields,
after some complicated calculations, the following expression of the outgoing
spinor (to be derived in the next Appendix by a simpler method)

F =
{
pµpνh

µν

E(p)
+

i�

2E(p)

[
pν∂ih

µνγiγµ + pµ∂ih
µi − pµ

vi

c

(
∂ih

µ0 + ∂ih
µνγ0γν

)
+2

pµpν
E(p)

vi∂ih
µν +

c2(t− t′)
E(p)

(
δij − vi

c

vj

c

)
∂i∂j (pµpνhµν)

]}
p=p0

.(191)

Appendix D: Derivation of the Wave Function
Using the Momentum Representation

The method used for the amplitude in the main text can be used to derive the
wave function. The spinorial wave function for one–(anti)particle states is

χ(x) = 〈φ0| θ(x) |χ(t)〉 . (192)

For particles:

〈φ0| θ(+)(x) |χ(t)〉 = 〈φ0| θ(+)(x) |χi〉 (193)

− i

�

1
(2π�)3/2

∑
r,r′

∫ t

t0

dt′
∫

d3p

∫
d3k

(2π)3/2
mc2

E(p+ �k)
u(r)(p+ �k)u(r)†(p+ �k)

ṼG(k,p, t′)eik·xe i
�
[E(p+�k)−E(p)](t′−t)

√
mc2

E(p)
u(r

′)(p)e
i
�
(p·x−E(p)t)〈1p,r′ |χ(t′)〉

14 See, for instance [24].
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and a similar formula for antiparticles. To first order we get

χ(1)(x) = (194)

− i

�

1
(2π�)3/2

∑
r,r′

∫ t

t0

dt′
∫

d3p

∫
d3k

(2π)3/2
mc2

E(p+ �k)
u(r)(p+ �k)u(r)†(p+ �k)

ṼG(k,p, t′)eik·xe i
�
[E(p+�k)−E(p)](t′−t)

√
mc2

E(p)
u(r

′)(p)e
i
�
(p·x−E(p)t)〈1p,r′ |χi〉

The next idea is to express the propagator which appears in this equation in
order to write the outgoing spinor in the form of Dirac matrices multiplying the
initial spinor plane wave components.

From ∑
r

u(r)(p)u(r)(p) =
1

2mc
[γµpµ +mc] (195)

one obtains ∑
r

mc2

E(p+ �k)
u(r)(p+ �k)u(r)†(p+ �k) =

c

2E(p)
[γµ (pµ + �κµ) +mc]

(
1− �κ0c

E(p)

)
γ0 , (196)

from which, after some algebra, one finds the spinor

χ(1)(x) = − i

�

1
(2π�)3/2

∑
r′

∫ t

t0

dt′
∫
(d3p)

∫
d3k

(2π)3/2
c2

2E(p){
(pµ + �κµ) h̃µνpν

(
1− �κ0c

E(p)

)
− i�

2
κρσ

ρν h̃µνp
µ

}
(197)

eik.xei[E(p+�k)−E(p)](t′−t)/�

√
mc2

E(p)
u(r

′)(p)ei(p·x−E(p)t)/�〈1p,r′ |χi〉

where the time–dependent exponential can be expanded to any desired order for
recoil shift corrections:

ei[E(p+�k)−E(p)](t′−t)/� = (198)

eik·v(t
′−t)

[
1 + i�

c2(t′ − t)
2E(p)

(
k2 −

(
cp · k
E(p)

)2
)]
- eik·v(t

′−t) [1 + iδ(t′ − t)] .

Finally one can check that:

〈χref |U (1)(t, t0) |χ(t0)〉 =
∫

d3x χ†ref(x)χ
(1)(x) . (199)
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We obtain indeed∫
d3xχ†ref(x)χ

(1)(x) = − i

�

∑
r,r′

∫ t

t0

dt′
∫
d3p

∫
d3k

(2π)3/2
e

i
�
[E(p+�k)−E(p)]t′

√
mc2

E(p+ �k)
u(r)†(p+ �k) 〈χref | 1p+�k,r〉 c2

2E(p)
(200)

{
(pµ + �κµ) h̃µνpν

(
1− �κ0c

E(p)

)
− i�

2
κρσ

ρν h̃µνp
µ

}√
mc2

E(p)
u(r

′)(p)〈1p,r′ |χi〉 ,

with√
mc2

E(p+ �k)
u†(r)(p+ �k)

c2

2E(p){
(pµ + �κµ) h̃µνpν

(
1− �κ0c

E(p)

)
− i

�

2
κρσ

ρν h̃µνp
µ

}√
mc2

E(p)
u(r

′)(p) (201)

=
c2

2E(p)
(pµ + �κµ) h̃µνpν

(
1− �κ0c

2E(p)

)
δrr′ +

i�

2m(γ + 1)

[
(k × p)c

2pµh̃µνp
ν

2E2(p)

]

·w(r)†aw(r′) − i�c

4γ

[
k ×

(
h̃−

⇒̃
h · pc

E(p)

)]
· w(r)†aw(r′) ,

from which equation (132) is recovered.
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Spin in Gravity
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Abstract. In these two talks, we report on the efforts to probe the role of spin and
polarization in gravitation. After reviewing the motivation and historical background,
we focus the talks on the experimental searches. These experimental searches are
mainly of two categories: (i) laboratory searches (torsion–balance experiments, mag-
netic resonance experiments, SQUID experiments), and (ii) astrophysical and cosmo-
logical searches (pulsar observations, radio–galaxy observations, gamma–ray observa-
tions). We first discuss experimental searches for photon polarization coupling and then
discuss experimental searches for electron spin–coupling. In the discussion of photon
polarization coupling, we review the astrophysical and cosmological electromagnetic
propagation observations. In the discussion of electron spin–coupling, we review the
weak equivalence principle experiments, the finite–range spin coupling experiments,
the spin–spin coupling experiments and the cosmic–spin coupling experiments. We dis-
cuss two recent laboratory experiments, a SQUID experiment and a torsion–balance
experiment in detail to illustrate the experimental techniques. The ultimate searches
for the role of spin in gravitation is to measure the gyrogravitational ratio. A discussion
of the strategies to perform such experiments conclude these two talks.

1 Introduction

According to our present understanding of physics, particles and fields transform
appropriately under inhomogeneous Lorentz transformations. These inhomoge-
neous Lorentz transformations form a group called the Poincaré group. The
only invariants characterizing irreducible representations of the Poincaré group
are mass and spin (or helicity in the case of zero mass). Both electroweak and
strong interactions are strongly spin–dependent. The question comes whether the
gravitational interaction is spin–dependent (polarization–dependent). In this pa-
per, we review the searches for the role of spin in gravitation. The gravitational
interaction is the earliest formulated interaction. Both Newtonian gravitation
and Einstein’s general relativity are universal–interaction theories about masses.
There are no (direct) polarization–dependent effects in these theories. Histori-
cally, these theories were formulated before spin was discovered. Ever since the
existence of spin (quantum spin) was noticed, people started to propose possible
polarization–dependent effects in gravitation on various levels. If there are spin–
dependent effects in gravitation, Einstein’s Equivalence Principle (EEP) would
be violated at a certain appropriate level. Since mass and spin (helicity) are
two independent invariants of the Poincaré group, there is the question whether
the gravitational interaction between masses and the “gravitational” interac-
tion between spins have the same coupling constant. If the strengths of coupling

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 439–456, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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are different, then the question comes whether we shall call the spin–spin or
spin–mass interaction gravitational. This question can only be answered if the
strengths are determined and a working theory (e.g., superstring theory) is for-
mulated and adopted. From a phenomenological approach, we ask whether there
is a long–range (or semi–long–range) spin interaction (in addition to electromag-
netic spin interaction) and what is its strength and interaction form. Therefore,
in reviewing the experimental searches, we include the related efforts.

In Section 2, we review the theoretical relations among the equivalence prin-
ciples and the way leading to the axial interaction. In section 3, we discuss
spin and gravitation emphasizing torsion and gyrogravitational ratio. In Section
4, we articulate on the inter–relations among spin, equivalence principle and
(semi–)long–range forces. In Section 5, we review the experimental searches for
photon polarization coupling and related tests of EEP. In Section 6, we review
the experimental searches for electron spin–coupling; we discuss weak equiva-
lence principle experiments, finite–range spin–coupling experiments, spin–spin
coupling experiments and cosmic spin–coupling experiments in four subsections.
In Section 7, we present an outlook.

2 WEP, EEP and the Axial Interaction

Equivalence principles [1,2] are cornerstones in the foundation of gravitation the-
ories. In the theoretical study of the foundation problems, to what extent the
Galileo weak equivalence principle {Universality of free–fall trajectories, (WEP
I)} implies the validity of the Einstein equivalence principle (EEP) is an im-
portant issue. Schiff [3] conjectured that the Galileo weak equivalence principle
implies the Einstein equivalence principle. In 1972, I started to investigate this
issue and reached a counterexample of Schiff’s conjecture [4]. In order to find
out to what extent the violation occurs, I followed up using a general framework
— the χ− g framework to study Schiff’s conjecture and theoretical relations of
various equivalence principles [5,6].

The χ − g framework can be summarized in the following interaction La-
grangian density

LI = − 1
16π

χijklFijFkl −Akj
k(−g)1/2 −ΣImI

dsI
dt

δ(x− xI) (1)

where χijkl = χklij = −χklji is a tensor density of the graviational fields (e.g.,
gij , φ, etc.) or fields to be investigated and jk, Fij ≡ Aj,i − Ai,j have the usual
meaning. The gravitation constitutive tensor density χijkl dictates the behavior
of electromagnetism in a gravitational field and has 21 independent components
in general. For a metric theory (when EEP holds), χijkl is determined completely
by the metric gij and equals (−g)1/2( 12gikgjl − 1

2g
ilgkj).

We proved that for a system whose Lagrangian density is given by Eq. (1),
WEP I holds if and only if

χijkl = (−g)1/2 [ 12gikgjl − 1
2g

ilgkj + φεijkl
]
, (2)
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where φ is a scalar function of the gravitational fields or fields to be investigated,
and εijkl = (−g)1/2eijkl with

eijkl =


1, if (ijkl) is an even permutation of (0123)
−1, if (ijkl) is an odd permutation of (0123),
0, otherwise.

(3)

If φ �= 0 in (2), the gravitational coupling to electromagnetism is not minimal
and EEP is violated. Hence WEP I does not imply EEP and Schiff’s conjecture
is incorrect [4–6]. However, WEP I does constrain the 21 degrees of freedom of
χ to only one degree of freedom (φ), and Schiff’s conjecture is largely right in
spirit.

The theory with φ �= 0 is an axial theory with important astrophysical and
cosmological consequences (Section 5). This is an example that investigations
in fundamental physical laws lead to implications in cosmology. Investigations
of CP problems in high energy physics leads to a theory with a similar piece of
Lagrangian with φ the axion field [7–12] (Section 5.2).

In the nonmetric theory with χijkl (φ �= 0) given by Eq. (2) [4–6], there are
anomalous torques on electromagnetic–energy–polarized bodies so that different
test bodies will change their rotation state differently, like magnets in magnetic
fields. Since the motion of a macroscopic test body is determined not only by
its trajectory but also by its rotation state, the motion of polarized test bodies
will not be the same. We, therefore, have proposed the following stronger weak
equivalence principle (WEP II) to be tested by experiments, which states that
in a gravitational field, the motion of a test body with a given initial motion
state is independent of its internal structure and composition (universality of
freefall motion) [5,6]. Therefore, in this framework, the imposition of WEP II
guarantees that EEP is valid.

Before mid–seventies, the actual weak equivalence experiments were per-
formed on unpolarized bodies. These experiments constrained only 2 degrees
of freedom of χ. Only when experiments are performed on polarized bodies with
various electromagnetic energy configurations, can they constrain the other 18
degrees of freedom. This situation motivated us to study other existing and
potential experimental and observational evidences for EEP, and to perform
experiments on polarized bodies and to search for spin–dependent forces.

Our efforts to test equivalence principle for polarized bodies [13] and to
search for spin–dependent forces [14–17] led us to search for axion–like forces also
[18,19]. We discuss these searches in Section 6. Since the electromagnetic energy
contents of laboratory polarized–bodies and unpolarized–bodies are small, other
experimental and observational evidences are crucial in laying the foundation for
the Einstein equivalence principle. In Section 5, we discuss the constraints from
these evidences and how to generalize the χ−g framework to give a more general
framework for testing the foundation of relativistic gravity including microscopic
phenomena.
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3 Spin and Gravitation

Ten years after the discovery of general relativity, in 1925-26, Goudsmit and
Uhlenbeck [20] introduced our present concept of electron spin as the culmina-
tion of a series of studies of doublet and triplet structures in spectra. From the
very beginning of its discovery, spin remains a microscopic object. One way to
incorporate spin into the classical general relativity is to treat the aggregate of
spins as ordinary angular momentum. This is a standard way to extend general
relativity.

However, as we know, for the electromagnetic interaction, the gyromagnetic
ratios of elementary particles are different from one, and these ratios reveal the
inner electromagnetic structures of elementary particles. What would be the
gyrogravitatinal ratios of elementary particles? If they differ from one, they will
definitely reveal the inner gravitational structures of elementary particles. These
will give clues to the microscopic origin of gravity.

The Stanford Orbiting Gyro Relativity (GP-B) experiment to be launched
in 2001 is a very precise and difficult experiment [21]. It aims at detecting the
Lense–Thirring effect. When this is done, and some of the rotating gyros are
replaced by spin–polarized bodies, the gyrogravitational ratio will have a chance
to be measured [22]. Microscopic experiments, when developed, may contribute
to this very difficult task too (Section 7).

Theoretically, since a spin 1/2 particle is the most fundamental object in the
consideration of quantum spin, we look into its inertia effects [23] and curva-
ture effects of a Dirac particle in the standard theory of gravitation as extended
by Cartan, Sciama, Kibble, and Hehl et al. [24–29]. In 1921, Eddington [30]
mentioned the notion of an asymmetric affine connection in discussing possible
extensions of general relativity. In 1922, Cartan [24] introduced torsion as the
antisymmetric part of an asymmetric affine connection and laid the foundation
of this generalized geometry. Cartan [25] proposed that the torsion of spacetime
might be connected with the intrinsic angular momentum of matter. Follow-
ing this idea, Sciama [27,28] and Kibble [26] developed a theory of gravitation
which is commonly called the Einstein–Cartan–Sciama–Kibble theory. Hehl et
al. [29] extended it to a dynamical torsion theory. The inertia effects include the
Bonse–Wroblewski phase shift due to acceleration, the Sagnac–type effect, the
rotation–spin effect, the redshift of the kinetic energy, and the inertial spin–orbit
coupling [23]. The torsion effects are analyzed in [31,32] and references therein.
The curvature effects give the gyrogravitational ratio.

The study of this problem from more basic points of view involves two ap-
proaches:

The first approach starts with the connection. After the formulation of gauge
theory by Yang and Mills in 1954, many efforts have been made to bring the
gravitation into the present gauge–theoretic framework. Yang [33] proposed his
gravitational equation in 1974 along this line. However, there are spurious so-
lutions [34] and the metric is postulated instead of derived. Affine connections
correspond to gauge potentials. To be truly analogous to the present gauge
theories, the metric ought to be derivable from the affine connection and the
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equations of motion. To pursue this approach further, we first obtain the neces-
sary and sufficient conditions for the existence of a metric in an affine manifold
[35]. Now the problem comes as how to transform these conditions into equations
of motion derivable from a variational principle. Ashtekar’s formulation [36] of
general relativity is an approach in this general direction.

The second approach starts from an extended framework for Dirac particle
in a gravitational field and explores various possible relations between spin and
gravity [37,38].

Metric–affine theories treat metric and affine connection more or less on equal
footing. For recent research results, see [39,40] and references therein.

4 Spin, Equivalence Principle, and Long–Range Forces

The equivalence principle is an important cornerstone of universal gravitation.
The precision of its validity puts an important constraint on gravitation theories
and particle theories. Possible deviation from equivalence would give a clue to
the microscopic origin of gravity or some new fundamental forces(s). In relation
to spins, we look into polarization–dependent deviations from equivalence. In
this respect, experiments with polarized entities play an especially important
role.

Particles and fields transform appropriately under inhomogeneous Lorentz
transformations which form the Poincaré group. The only invariants charac-
terizing irreducible representations of the Poincaré group are mass and spin (or
helicity in the case of zero mass). Gravitational interaction is a long–range mass–
mass interaction. From a phenomenological approach, we ask whether there is a
long–range (or semi–long–range) spin–mass or spin–spin interaction and what is
its strength and form of interaction. Experiments on macroscopic spin–polarized
bodies are sensitive tools to detect and study these possible interactions to a
good precision.

In the new general relativity of Hayashi and Shirafuji [41], the coupling with
an antisymmetric field leads to a universal spin–spin interaction. From gauging
a sub–group of the Lorentz group, Naik and Pradhan [42,43] proposed a sim-
ilar interaction. Around 1980, the particle physics community began to realize
the possible existence of Goldstone bosons and/or pseudo–Goldstone bosons.
These bosons generate (semi–)long–range forces of monopole–monopole type,
monopole–dipole(spin) type, and dipole–dipole (spin–spin) type, just like the
new general relativity of Hayashi and Shirafuji [41]. The axion [7–12] is such a
pseudo–Goldstone boson. The recent issue of the fifth force arises from the ex-
istence of a semi–long–range coupling to baryon number/hyper–charge/lepton
number. Attempts have been made to construct models of long–range forces in
higher dimensional Kaluza–Klein type theories and superstring theories. An at-
tempt to generalize Nambu–Goldstone mechanism shows that the restoration of
a spontaneous violation of a “fact”, such as the “fact” that translation generators
in different directions commute, implies the existence of a massless excitation
and, therefore, a long–range force. All the above cases can be explored exper-
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imentally by gravitation–type experiments on macroscopic bodies–Eötvös–type
experiments, Galileo–type (“free–fall”) experiments and cavendish–type experi-
ments [13].

5 Experimental Searches for Photon Polarization
Coupling and Tests of EEP

In the χ− g framework, for a weak gravitational field,

χijkl = χ(0)ijkl + χ(1)ijkl (4)

where
χ(0)ijkl =

1
2
ηikηjl − 1

2
ηilηkj (5)

with ηij the Minkowski metric and all |χ(1)| � 1. In this field the dispersion
relation for ω for a plane–wave propagating in the z–direction is

ω± = k{1 + 1
4
[(K1 +K2)±

√
(K1 −K2)2 + 4K2]} (6)

where
K1 = χ(1)1010 − 2χ(1)1013 + χ(1)1313,

K2 = χ(1)2020 − 2χ(1)2023 + χ(1)2323,

K = χ(1)1020 − χ(1)1023 − χ(1)1320 + χ(1)1323. (7)

Photons with two different polarizations propagate with different speeds V± =
ω±/k and would split in 4–dimensional spacetime. The conditions for no splitting
(no retardation) is ω+ = ω−, i.e.,

K1 = K2 , K = 0. (8)

Eq. (8) gives two constraints on the χ(1)’s [44–46].
The condition for no splitting (no retardation) in all directions gives ten

constraints on the χ(1)’s. With these ten constraints, χ can be written in the
following form

χijkl = (−H)1/2
[ 1
2H

ikHjl − 1
2H

ilHkj
]
ψ + φeijkl (9)

where H = det (Hij) [44–46]. With the null–birefringence observations of pulsar
pulses and micropulses before 1980, these relations are empirically verified to
10−14 − 10−16 [44–46]. With the present pulsar observations, these limits would
be improved. Analyzing the data from polarization measurements of extragalac-
tic radio sources, Haugan and Kauffmann [47] inferred that the resolution for
null–birefringence is 0.02 cylce at 5 GHz. This corresponds to a time resolution
of 4 ×10−12 s. With a detailed analysis and more extragalactic radio observa-
tions, (9) would be tested down to 10−28− 10−29 at cosmological distances. The
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electromagnetic propagation in Moffat’s nonsymmetric gravitational theory fits
the χ − g framework. Krisher [48] and Haugan-Kauffmann [47] have used the
pulsar data and extragalactic radio observations to constrain it. The effect of φ
in (9) is to change the phase of two different circular polarizations in gravitation
field and gives polarization rotation for linearly polarized light [4,49,50]. Using
polarization observations of radio galaxies, Carroll, Field and Jackiw [49,50] put
a limit of 0.1 on ∆φ over cosmological distances. Using a different analysis of
polarization observation of radio galaxies, Nodland and Ralston [51] found indi-
cation of anisotropy in electromagnetic propagation over cosmological distances
with a birefringence scale of order 1025 m (i.e. about 0.1-0.2 Hubble distance).
This gives ∆φ ∼ 5 - 10 over Hubble distance. Later analyses [52–56] did not
confirm this result and put a limit of ∆φ ≤ 1 over cosmological distance scale.
Further observations to test and measure ∆φ to 10−6 is promising. The natural
coupling strength φ is of order 1. However, the isotropy of our observable uni-
verse to 10−5 may leads to a change of ∆φ over cosmological distance scale 10−5

smaller. Hence, observations to test and measure ∆φ to 10−6 is very significant.
Eq. (9) is verified empirically to high accuracy from pulsar observations and

from polarization measurements of extragalactic radio sources, and we can now
look into the empirical constraints for Hij and ψ. In Eq. (1), ds is the line element
determined from the metric gij . From Eq. (9), the gravitational coupling to
electromagnetism is determined by the metric Hij and two scalar field φ and ψ.
If Hij is not proportional to gij , then the hyperfine levels of the lithium atom, the
beryllium atom, the mercury atom and other atoms will have additional shifts.
But this is not observed to high accuracy in Hughes–Drever experiments [57,58].
Therefore Hij is proportional to gij to a certain accuracy. Since a change of Hik

to λHij does not affect χijkl in Eq. (9), we can define H11 = g11 to remove this
scale freedom [44,59].

In Hughes–Drever experiments [57,58] ∆m/m ≤ 0.5×10−28 or ∆m/me.m. ≤
0.3× 10−24 where me.m. is the electromagnetic binding energy. Using Eq. (9) in
Eq. (1), we have three kinds of contributions to ∆m/me.m.. These three kinds are
of the order of (i) (Hµν−gµν), (ii) (H0µ−g0µ)v, and (iii) (H00−g00)v2 respectively
[44,59]. Here the Greek indices µ, ν denote space indices. Considering the motion
of laboratories from earth rotation, in the solar system and in our galaxy, we can
set limits on various components of (Hij−gij) from Hughes–Drever experiments
as follows:

|Hµν − gµν |/U ≤ 10−18

|H0µ − g0µ|/U ≤ 10−13 − 10−14,
|H00 − g00|/U ≤ 10−10. (10)

where U (∼ 10−6) is the galactical gravitational potential.
Eötvös–Dicke [60–63] experiments are performed on unpolarized test bodies.

In essence, these experiments show that unpolarized electric and magnetic ener-
gies follow the same trajectories as other forms of energy to a certain accuracy.
The constraints on Eq. (9) are

|1− ψ|/U < 10−10 (11)
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and
|H00 − g00|/U < 10−6 (12)

where U is the solar gravitational potential at the earth.
In 1976, Vessot and Levine [64] used an atomic hydrogen maser clock in a

space probe to test and confirm the metric gravitational redshift to an accuracy
of 1.4×10−4 [65]. The space probe attained an altitude of 10,000 km above the
earth’s surface. With Eq. (11), the constraint on Eq. (9) is

|H00 − g00|/U ≤ 1.4× 10−4. (13)

Thus, we see that for the constraint on |H00 − g00|/U , Hughes–Drever experi-
ments give the most stringent limit. However, STEP mission concept [66] pro-
poses to improve the WEP experiment by five orders of magnitude. This will
again lead in precision in determining H00.

The theory (1) with χijkl given by (2) is studied in [4] and [22]. In (1),
particles considered have charges but no spin. To include spin–12 particles, we
can add the Lagrangian for Dirac particles. In the next section, we review the
experimental tests of the equivalence principle for polarized bodies.

In the above discussions, we assume χ(0)ijkl in (4) to be given by the special
relativistic value (5). In general, χ(0)ijkl is determined from cosmological model
in a particular theory and provides a framework to test special relativity. From
null birefringence of pulsar observations, χ(0)ijkl is constrained to have the value
given in (5) to a precision of 10−16. From the polarization measurements of
extragalactic radio sources, the agreement to special relativity is to 10−20.

To include QCD and other gauge interactions, we have generalized the χ− g
framework [68]. Now we are working on a more comprehensive generalization
to include a framework to test special relativity, and a framework to test the
gravitational interactions of scalar particles and particles with spins together
with gauge fields [38]. The relation of this generalized framework with respect
to the Mansouri–Sexl framework [69], the Tourrenc–Melliti–Bosredon framework
[70] and Lämmerzahl framework [37] is under study.

6 Experimental Searches for Electron Spin–Coupling

In this section, we review and discuss electron spin–coupling experiments —
weak equivalence principle experiments, finite–range spin–coupling experiments,
spin–spin coupling experiments and cosmic spin–coupling experiments. An im-
portant issue is to make a spin–polarized body. Here we describe the strategy
and method.

To make a polarized–body with a net spin but without net magnetic moment,
we need both the orbital angular momentum contribution and spin contribution
of magnetic moment so that these contributions cancel each other, with a net
total spin remaining.

For iron–group transition elements in a crystal, the elements are exposed
to a noncentral electric field. In a noncentral field the plane of the orbit will
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move about; the angular momentum components are no longer constant and
may average to zero (quenched). For iron–group elements the orbital magnetic
moments are mostly quenched although spins may drag some orbital momenta
along with them.

For rare–earth elements the orbital angular momenta in the unfilled 4f shell
is not quenched. Therefore, rare–earth Fe, Co, Ni compounds would be good
materials for making spin–polarized bodies.

The experiments would be much easier to do at room temperature than at
low temperature. For light rare–earth elements and their compounds, the Curie
temperatures or Néel temperatures are quite low. Heavy rare–earth compounds,
such as Tb, Dy, Ho compounds generally have much higher Curie temperatures.
Dy6Fe23 has compensation temperature near room temperature.

In the Dy-Fe compounds, magnetization versus temperature curves indicate
artiferromagnetic interaction between iron and dysprosium atoms. From the sus-
ceptibility data, the strengths of Fe-Fe, Dy-Fe and Dy-Dy exchange interactions
can be derived. Fe-Fe exchange interaction dominates the others. Dy-Fe com-
pounds are ferrimagnetic at room temperature. The effective ordering of the
iron lattice and dysprosium lattice have different temperature dependence be-
cause the strengths of exchange interactions are different. At the compensation
temperature, the magnetic moments of two lattices compensate each other so
that there is no net magnetization. Dy+++ has L = 5 and S = 5/2 . Half of the
Dy magnetization comes from orbital angular momentum, the other half from
spin. Most of the iron magnetization comes from spin. So there is a net spin (and
net total angular momentum) remaining.

To make samples, Dy6Fe23 was synthesized by melting stoichiometric quanti-
ties of metallic iron and metallic dysprosium. The Dy6Fe23 ingots were crushed,
pressed into a cylindrical aluminum cup, and magnetized along the axial or a
transverse direction direction. The magnetic field was shielded by two halves of
pure iron casing, a thin aluminum spacer, and two sets of two fitting µ–metal
cups with another thin aluminum spacer between the two sets.

Measuring the magnetization–temperature curve of our sample Dy6Fe23,
comparing with temperature dependence curve in the literature and calculat-
ing from the magnetic properties of Dy6Fe23, there is at least 0.4 net polarized
electron per atom.

In addtion to the Dy6Fe23 samples, we also make DyFe3, HoFe3, Ho6Fe23
and Tb6Fe23 samples.

6.1 Weak Equivalence Principle Experiments

To investigate the equivalence principle for spin–polarized bodies or to probe
the mass–spin (monopole–spin/baryon–number–to–spin) interactions, we have
used both a beam balance [71] and a torsion balance [13] to test a magnetically
shielded spin–polarized body of Dy6Fe23. From these results, we have inferred
that, to an accuracy of 5 × 10−3, the polarized electron falls at the same rate
as unpolarized bodies in the earth’s gravitational field, and that it falls at the
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Fig. 1. Limits on σ·r̂ spin coupling for axionlike interactions from various experiments.

same rate as unpolarized bodies in the solar gravitational field with a deviation
from this unity ratio estimated at (3± 4)× 10−2.

At the present, we are working on a rotatable torsion–balance experiment and
have improved the solar equivalence principle test by one order of magnitude [72].

6.2 Finite–Range Spin–Coupling Experiments

In [73], we use torsion balance with two cylindrical copper test masses and two
cylindrical polarized “attracting” masses to search for finite–range mass–spin
interactions with the Hamiltonian of the form: Hint = f(r)σ · r̂ which includes
the finite–range Leitner–Okubo–Hari Dass interaction with f(r) = −Ae−µrmU .
This result shows that for the range of 3-5 cm, the upper limit of this interaction
for our test mass and polarized mass is below 1% of the gravitational interaction.

Ritter, Winkler and Gillies [74] use spin–polarized Dy6Fe23 masses acting on
unpolarized copper masses in a dynamic–mode torsion pendulum, and searched
for interaction of the axion [7–12,75] form

Hint =
�gsgp
8πmc

(
1
λr

+
1
r2

)
e−r/λσ · r̂ . (14)

In (14), λ is the range of the interaction, gs and gp are the coupling con-
stants of vertices at the polarized and unpolarized particles and m is the mass of
the polarized particle. Constraints on the coupling gsgp/�c with respect to the
range from various experiments are plotted in a logarithmic plot (Fig. 1). For
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λ < 0.3 m, references 73 and 74 give more stringent constraints than references
76 and 77, and for λ > 0.3 m, vice versa. References 76 and 77 investigate the
existence of hypothetical anomalous spin–dependent forces by sensing the inter-
action of polarized trapped ions with fermions in the earth. These experiments
are more sensitive to longer range forces, while experiments with laboratory
sources are more sensitive to shorter range forces. Reference 8 has the best limit
for 0.1 m < λ < 8 m. Our works [19,73] have the best limit for λ < 0.1 m.
In figure, we also show the proposed sensitivities of the STEP spin–coupling
experiment [79,66] and the AXEL spin–coupling experiment (AXial Experiment
at Low temperature) [80,81,18] together with allowed region of present axion
models.

Speake’s group at the University of Birmingham is working on the develop-
ment of a new superconducting torsion balance to detect force on the mass for
the spin–coupling experiment. H.J. Paik at the University of Maryland proposes
to use superconducting accelerometers for a spin–coupling experiment with a
high Q. They are also aiming at very significant improvement.

In Fig. 1, there are magnetic resonance experiments, torsion balance experi-
ments and SQUID experiments. In the following, we give a taste of experimental
procedure using a SQUID experiment [19]. The experiment measures the effec-
tive Beff field produced by hypothetical axion or axion–like interaction while
magnetic field is shielded by two niobium superconducting shields. Equation
(14) can be written in the form

Hint = −m ·Beff = −µeσ ·B, (15)

with µe = − | µe | the magnetic moment of the electron. Hence in this experi-
ment, we sensitivly measure Beff field given by

Beff = − �

µe

gsgp
8πmec

(
1
λr

+
1
r2

)
e−r/λr̂ . (16)

The scheme of our experimental setup is shown in Fig. 2. Our copper mass is
sitting on one side of the turntable underneath the dewar. In the data taking, a
laser beam and a chopper–photodetector systm is used to lock the output signal
of the dc SQUID to the rotation angle of the polarized bodies. The laser beam
is intercepted by the chopper when the copper axis is in line with the axis of the
paramagnetic salt. We define this angle to be zero degree, and expect the σ · r
interaction signal to be proportional to cosΘ, where Θ is the angular position
of the copper mass.

To start the measurement, we set the turntable with copper mass rotating at
0.96 cycle per second with a stepping motor system. The stability of the rotation
speed is better than 10−4. The output of voltage of the dc SQUID system for 1 φo
from the most sensitive scale of the dc SQUID controller is 10 V. This output is
further amplified 1000 times and low–pass filtered to 10 Hz bandwidth, and then
read into a computer with an analog to digital converter. The angular position
of the copper mass is simultaneously read into this computer. The typical noise
of the SQUID output after 1000 times amplification and 10 Hz low pass filtering
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Fig. 2. Schematic for spin–coupling experiment.

as recorded by ADC (Analog–to–Digital Converter) is about ±300 mV. This
is consistent with the dc SQUID noise 200 mV/

√
Hz after amplification. When

we average the data for 400 cycles, the typical output is about ±50 mV and
the pattern repeats. To subtract this interference background, we average the
data for 4-5 hours, alternatively take away and put back the copper cylinder to
average the data for another 4-5 hours and subtract the results to find the net
effects.

The weighted average of the six runs for the amplitude of cosΘ component is
(0.49±2.34) mV. Expressed in terms of flux amplitude, it becomes (0.49±2.34)×
10−7 φo. Converted to Beff , we have (1.13 ± 5.38) × 10−12 Gauss and the cou-
pling constant gsgp/�c is (0.14±0.67)× 10−28 for λ > 30mm. Our experimental
constraint on the coupling constant gsgp/�c improves over previous results by 2
orders of magnitude at λ = 30 mm. Further improvement will be implemented.
For finite–range Leitner–Okubo–Hari Dass interaction, the dimensionless param-
eter A is constrained to less than 10 for the range parameter λ = µ−1 > 30 mm.

6.3 Spin–Spin Coupling Experiments

Usually the dipole–monopole (spin–mass) part of an interaction is larger than
its dipole–dipole (spin–spin) part. Monopole–monopole part is sometimes larger
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if there is no constraint. However the monopole–monopole part does not change
with polarization and is usually harder to detect. Therefore in search for a new
interaction, searching for dipole–monopole part is usually more significant. This
is true for axion search. However, for axial photon [42,43] search and arion [82]
search, the search for anomalous spin–spin interactions give stringent constraints.

Let αs be the strength of the anomalous spin–spin interaction compared to
the magnetic spin–spin interaction. The pioneer work of Graham and Newman
[83] used carefully prepared hybrid split toroids of GdNi5/NdNi at supercon-
ducting temperatures with a torsion balance of the feedback deflection type.
Their experimental result assigns uncertainties in two parts: statistical at the 1
σ level and an estimated systematic uncertainty αs = (8.0± 6.3± 1.1)× 10−11.
The torsion balance experiment led by Ritter at the University of Virginia uses
the period method and gives the constraint αs < 1.5 × 10−12 [84]. Adapting
the induced ferromagnetism method of Vorobyov and Gitarts [85], we use a low
noise dc SQUID system to search for the interaction of spins in a spin–polarized
test mass and those in a paramagnetic salt, separated by a µ–metal shield and a
double–layer superconducting shield [15–17]. Our result limit the strength of αs

to αs = (1.2±2.0)×10−14 [17]. This limits the coupling of axial photon and the
arion coupling to a level much lower than originally proposed. We are currently
working on an improvement of this experiment.

6.4 Cosmic Spin–Coupling Experiments

Hughes–Drever experiments [57,58] test the Cosmic Spatial Isotropy for spin 3/2
particle very precisely. Recently, frequency and clock experiments push this limit
even further.

As to the spin 1/2 particle, Phillips [86] used a cryogenic torsion pendulum
carrying a transversely polarized magnet with superconducting shields to set a
stringent limit of 8.5×10−18eV for the splitting of the spin states of an electron
at rest on Earth. In our laboratory we have used a room–temperature torsion
balance with a magnetically–compensated polarized–body and set a spin energy
level splitting limit of 3 × 10−18eV [87,88]. Berglund et al. [89] use a magnetic
resonance technique and set a limit of 1.8× 10−18 eV on the energy splitting.

For the analysis of cosmic anisotropy for electrons, we can use the following
Hamiltonian:

Hcosmic = C1σ1 + C2σ2 + C3σ3 (17)

in the cosmic frame of reference. This includes the following two cases, (i)
Hcosmic = gσ · n where n is a cosmic vector which defines a preferred direc-
tion, with C1 = gn1, C2 = gn2, C3 = gn3 as considered in the references [87,88];
here C’s are constants, (ii) Hcosmic = gσ · v where v is the velocity with re-
spect to the comic background defined by the isotropy of background radiation,
with C1 = gv1, C2 = gv2, C3 = gv3 as considered in the context of references
[90,91]; in this case, since v is largely the velocity of our solar system through
the cosmic preferred frame, to a first approximation, C’s are also constants. For
convenience, we use the celestial equatorial coordinate system from the center
of earth for our laboratory position,
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i.e., the earth rotation axis (North pole
direction) as z–axis and the direction
of the spring equinox as the positive
x–direction. All the above experimen-
tal constraints are on C1 and C2. The
constraints on C3 are crude.

To improve the precision and to
constrain on C3, we use a rotatable
torsion balance carrying a transversely
spin–polarized ferrimagnetic Dy6Fe23
mass. With a rotation period of one
hour, the period of anisotropy signal
is reduced from one sidereal day by
about 24 times, and hence the 1/f
noise is greatly reduced. Our present
experimental results constrain the cos-
mic anisotropy constant C1, C2, C3 to√

C2
1 + C2

2 < (1.8 ± 5.3) × 10−21 eV
and | C3 |< (1.2 ± 3.5) × 10−19 eV.
This improves the previous limits on
(C1, C2) by 120 times and C3 by a fac-
tor of 800. Our experimental set–up is
schematically shown in Fig. 3.

The angular velocity of the cosmic
signals is Ω+ω, Ω−ω, and ω. By the earth rotation the projection of the electron
spin in the x − y plane rotates to opposite direction relative to the neutrino
background or cosmos after half of a sidereal day (11 hours 58 min 2 seconds).
Adding the two data sets separated by half sidereal day, we can eliminate the
Ω+ω, Ω−ω term, and estimate C3. Subtracting between the same two data sets,
we can eliminate the ω term. With 4 sequential data sets (each set’s separated by
half sidereal day) in opposite rotational direction of rotatable table, the signals
with frequencies Ω + ω, Ω − ω, ω can be separated. The results of eight such
sets of runs gives the limits on C1, C2, C3 just mentioned. This experiment also
gives a stringent CPT test [94].

7 Outlook

We have reviewed and discussed theoretical motivations and experimental sear-
ches for the role of spin and polarization in gravity. Efforts in this direction
will bear fruits both in fundamental physics and cosmology. For example, the
study of equivalence principles leads to polarization effects in cosmology to be
tested by astrophysical observations, and experiments on spin–polarized bodies
constitute strong CPT tests.

The ultimate searches for the role of spin in gravity is to measure the gyro-
gravitational ratios of particles. For these searches difficult experiments are to be
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performed. As we have already seen, the difficulties of the Stanford Gyroscope
experiment to be launched in 2002 and the technological achievement already
made are very great. However, there is a chance of success by using the following
method:

(i) Polarized–body method [22],
(ii) Atom interferometry [95],
(iii) Superfluid 3He [96].

Let us look into the future.
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Spin in Special and General Relativity

Lewis H. Ryder
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Spin is the ultimate gyroscope. The smallest possible amount of angular
momentum is �/4π – that possessed by a spin 1

2 particle. When the day comes
that it becomes realistic to theorise about and to measure the precession of a
spin 1

2 particle it will be necessary to have to hand the relevant theoretical tools;
in other words, to be able to give a description of spin one–half particles which is
consistent with Special Relativity, and to generalise that description to General
Relativity. In general terms, then, this is an exercise in relativistic quantum
mechanics, and in the case of General Relativity, in quantum mechanics in a
curved space. This latter is, of course, different from quantum gravity. Quantum
gravity is a theory describing the quantum nature of the gravitational field itself,
for example in terms of gravitons. For our purposes the gravitational field is
treated classically, as a curved space–time. The only thing to be quantised is the
spin 1

2 particle.
It may be thought that this exercise has already been performed, since the

Dirac equation is nothing other than a relativistic equation for spin 1
2 particles.

It turns out, however, that the Dirac equation itself does not automatically
yield a relativistic spin operator. The problems connected with finding such
an operator were already identified in 1950 by Foldy and Wouthuysen. After
outlining these problems, we shall describe how this operator is constructed.
The paper concludes with some remarks about the extent to which it makes
sense to talk about spin in the context of general relativity. In particular it will
be pointed out that spin precession is inevitable in GR; there is no such thing as
conserved spin in curved spacetime.

1 The Dirac Equation

The Dirac equation is a first order wave equation for spin one–half particles. In
the usual notation, with a metric (+,−,−,−) and c = 1 , it is

(γ0E + γ · p)ψ = mψ (1)

To satisfy the Einstein (mass–shell) condition E2 − p · p = m2 it is found that
the coefficients γµ cannot be ordinary numbers, but must be matices – in fact,
4× 4 matrices. In the “standard representation” (see for example [1])

γ0 =
(
1 0
0 −1

)
, γi =

(
0 σi −σi 0) (2)
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where each of the entries above is a 2× 2 matrix and σi are the Pauli matrices.
Since the γs are 4× 4 matrices, the “wave function” ψ must have 4 components.
We may write

ψ =
(
u
v

)
(3)

where the “Pauli spinors” u and v each have two components.
Dirac was setting out to find a wave equation for the electron; that is, for

a spin 1
2 particle. It is reasonable, therefore, to ask what there is in the above

to convince us that equation (1) does indeed describe a particle with spin 1
2 . A

spin 1
2 particle has two spin components and the generators of the group SU(2)

(the covering group of SO(3)) are proportional to the Pauli matrices; we have[
�

2σ
i, �

2σ
j
]
= i�εijk

�

2σ
k . (4)

It is, of course, very well known that the reason ψ above has 4 components
rather than 2 is that the Dirac equation predicts the existence of particles and
antiparticles together, and they each have spin 1

2 . It is, then, a simple matter to
define

Σi =
(
σi 0
0 σi

)
, (5)

and �

2Σ
i will clearly also obey the commutation relations (4) above. Moreover,

the Dirac equation is a relativistic wave equation so the proposition immediately
suggests itself that �

2Σ
i is in fact the relativistic spin operator. This proposition

runs into a problem, however. The Dirac Hamiltonian is

H = γ0(m+ γ · p) =
(

m σ · p
σ · p −m

)
(6)

and the problem is that [Σi, H] �= 0; spin, given by the operator (5), would not
be a conserved quantity. It turns out that the Dirac equation suffers from another
problem, which turns out to be related to this one; or, at least, the solution to the
one problem is also the solution to the other. This problem is that the velocity
operator v = dr/dt has eigenvalues ±1, i.e. ±c, so Dirac particles should travel
at the speed of light. This is clearly inconsistent with relativity.

These problems were addressed and solved by Foldy and Wouthuysen almost
half a century ago [2]. Their strategy was to find a transformation of the wave
function ψ, ψ′ = eiSψ, under which the new Hamiltonian

H ′ = eiSHe−iS − ieiS
∂

∂t
e−iS , (7)

is block–diagonal. Equivalently, it should contain no terms which coupled the
two–spinors u and v (see equation (3)) – in the words of FW, no “odd” terms.
The required transformation turns out to be

eiS =
E +m+ iγ · p√

2E(E +m)
, (8)
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and the new Hamiltonian is

H ′ =
(√

m2 + p2 0
0

√
m2 + p2

)
, (9)

a sensible result indeed! Under the FW transformation a general operator A
becomes A′ = eiSAe−iS , so the new spin operator is

X = eiS
1
2
Σe−iS +

Σ · p
2E(E +m)

+
i

2E
γ5γ0Σ × p (10)

This highly non–linear operator is called the “mean spin operator” by Foldy and
Wouthuysen. It commutes with the Hamiltonian (6) and therefore corresponds
to a conserved quantity. When acting on positive energy states (those for which
σ · p = γ5E − γ5γ0m) the mean spin operator becomes

XFW =
1
2
σγ0 − p

2(E +m)
γ5(1 + γ0) . (11)

Historically the Foldy–Wouthuysen transformation has been regarded as an in-
trinsically non–relativistic procedure – as the “correct” way of taking the non–
relativistic limit of the Dirac equation. This would seem to be the philosophy of
the treatment by Bjorken and Drell [1], for instance, as well as by Hehl and Ni
[3]. What I shall show, however, is that the FW operator above, when acting on
positive energy states, is in fact the relativistic spin operator for spin 1

2 particles.

2 Spin and the Poincaré Group

In non–relativistic quantum mechanics spin is consistently treated as being as-
sociated with rotations, and therefore, in group theoretic language, to be ap-
proached by analysing the rotation group. This is SO(3) in the simplest ap-
proach; but SO(3) does not have representations giving spin 1

2 . To treat these
particles one has to observe that the covering group of SO(3) is SU(2), and SU(2)
has a two–component complex spinor (“Pauli spinor”) as the basis state for its
fundamental representation. In the non–relativistic domain, then, a satisfactory
understanding of spin emerges if one views it as described by the covering group
of the rotation group.

On entering the relativistic domain, however, a fresh look has to be taken. It
was Wigner who took the freshest look at this problem and whose 1939 paper [4]
(1965) gives us the profoundest understanding of spin. Wigner pointed out that
what is involved is not the homogeneous, but – surprisingly – the inhomogeneous
Lorentz group, or Poincaré group; that is, the group of rotations, Lorentz “boost”
transformations and translations in spacetime. This group is the isometry group
of the Minkowski metric – though Wigner did not describe it in these terms. The
surprising thing is that translations should be relevant to the task of describing
spin, but Wigner’s argument, paraphrased rather drastically, was that spin was
the additional “label” necessary to identify quantum states after their mass had
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already been specified. Mass and spin are the two quantities by which states can
be specified, and they are both kinematic in origin. Mass (rest–mass, that is) is
given by the Einstein relation, mentioned above (with c = 1)

M2 = PµP
µ = E2 − P · P . (12)

E and P are, however, the generators of translations in time and space and it
is because of this that it is the Poincaré group, rather than the homogeneous
Lorentz group, which is the group of significance in this problem. In group theo-
retical language PµP

µ is the first Casimir operator of the Poincaré group; that is,
a quadratic function of the group generators which commutes with all of them.
The Poincaré group is, however, a group of rank 2 so there should be two Casimir
operators. If the first one gives mass, which it clearly does by equation (12), the
second one should yield spin. Wigner was unable to find an explicit expression
for the second Casimir operator, but he did pioneering work on elucidating the
group structure of the problem. The crucial step to take was to observe that the
group which described spin was the little group of the Poincaré group; that is,
the subgroup of it which leaves invariant a given 4–vector Pµ. Wigner showed
that this subgroup depends on M2. States are classified as timelike, spacelike or
lightlike according as M2 > 0, < 0, or = 0. There is also the case where Pµ = 0,
which is the null case. It is only in the case of timelike states that the little group
is the rotation group; in the other cases it is non–compact. This immediately
explains, for example, why the photon does not have a longitudinal polarisation
state, for that would only exist if spin were desribed by SO(3), which it is not
for lightlike states. The problem of identifying specific spin operators, however,
was left unsolved by Wigner.

It is clear that a necessary property of the spin operators is that they should
commute with the translation operators Pµ of the Poincaré group. The other
6 generators, however, usually denoted Jµν , do not commute with Pµ. (It may
be useful to remark what a “disappointment” this is, since the “obvious” spin
operators would be J0i, (i = 1, 2, 3), which generate SU(2).) A crucial step
forward, however, was made by Pauli, who defined [5] the operator

Wµ =
1
2
εµνρσJ

ρσP ν , (13)

generally known as the Pauli–Lubanski pseudovector. It is, of course, a 4–vector,
but because of the epsilon symbol only the intrinsic spin part of Jρσ, and not
the orbital part (which contains Pµ), will contribute to Wµ, so Wµ clearly has
something to do with spin. In addition,

W = WµW
µ (14)

commutes with all ten generators of the Poincaré group, and is therefore the
second Casimir operator of this group. For timelike states with mass M , W =
M2s(s+ 1), where s is the spin, so it is clear that M and W are the invariants
labelling mass and spin. The question still remains, however: what are the spin
operators, which generate, for timelike states, the group SU(2)?
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This question was all but answered by Gürsey [6] in 1965; the present author
did the mopping up recently [7]. First the commutator

Wµν =
1

M2 [Wµ,Wν ] (15)

is defined, as well as its dual

W ∗κλ =
1
2
εκλρσW

ρσ . (16)

The combinations

Xµν = −i (Wµν + iW ∗µν
)

(17)

Yµν = −i (Wµν − iW ∗µν
)
= iX∗µν (18)

(19)

may be shown to obey the commutation relations

[Xµν , Xκλ] = −i (gµκXνλ − gµλXνκ + gνλXµκ − gνκXµλ) (20)

and similarly for Y . These are the same in form as the commutation relations for
the angular momentum operators Jµν which generate the homogeneous Lorentz
group, and it therefore follows, by familiar arguments, that the two sets of op-
erators

Xi =
1
2
εijkXjk , Yi =

1
2
εijkYjk (21)

obey the SU(2) commutation relations

[Xi, Xj ] = εijkXk , [Yi, Yj ] = εijkYk . (22)

They therefore generate two SU(2) groups, and they are both relativistic spin
operators. In fact they are the operators appropriate for the left–handed and
right–handed states, so that the spin operator appropriate for Dirac particles is
given by

Zi =
1
2
(1− γ5)Xi +

1
2
(1 + γ5)Yi . (23)

Substituting the relations

W0 =
1
2
σ · p , Wi =

1
2
mσi +

pi
2(E +m)

σ · p (24)

into the above equations, we find

Z =
1
2
σγ0 − p

2(E +m)
γ5(1 + γ0) (25)

which, on comparison with equation (11), is the same as the Foldy–Wouthuysen
operator XFW when operating on positive energy states. We have therefore
shown that a relativistic spin operator can be defined for Dirac particles. The
starting point for its discovery is the realisation that the group of motion, or
isometry group, of Minkowski space, is the Poincaré group; the spin operator is
defined in terms of the generators of this group.
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3 General Relativity

The concluding remarks of the last paragraph make clear that in a general Rie-
mannian space, since there is no such simple isometry group as the Poincaré
group, there is also no spin operator; spin, that is to say, will not be conserved
in a curved space–time. It is therefore inevitable that spin precession will take
place in a gravitational field. Relativists are, of course, quite familiar with this
fact, and understand well the differing contributing factors to spin precession;
Thomas precession, geodetic precession and Lense–Thirring precession. The pur-
pose of the observation above is to place these facts in a somewhat more funda-
mental context, by drawing attention to the connection between the existence
of a (conserved) spin operator and that of an isometry group of the metric.

It is interesting to note finally that there is one space besides Minkowski
space with a ten parameter isometry group, and that is de Sitter space, a space
of constant curvature which, in the Euclideanised version, can be regarded as
S4, a hypersurface embedded in 5–dimensional Euclidean space. The “radius” of
this S4 may be denoted R and the limit R→∞ corresponds to the transition to
Minkowski space. The de Sitter group, like the Poincaré group, has rank 2 and
the associated two Casimir operators may be defined [8]. It turns out, hardly
surprisingly, that in the limit R → ∞ these two Casimir operators become,
in essence, mass and spin, the Casimir operators of the Poincaré group. But
this is only in the limit R→∞; in de Sitter space proper, the operator which is
conserved does not correspond with pure spin. And in any case, as just remarked,
de Sitter space is a very special case. In a general Riemannian space no conserved
spin operator may be defined. If the curvature of the space is small – which in
astronomical environments such as our own it is – then spin, as defined with
reference to the Poincaré group, is only approximately conserved.
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Abstract. The dynamical equations which are basic for the description of the dy-
namics of quantum felds in arbitrary space–time geometries, can be derived from the
requirements of a unique deterministic evolution of the quantum fields, the superposi-
tion principle, a finite propagation speed, and probability conservation. We suggest and
describe observations and experiments which are able to test the unique deterministic
evolution and analyze given experimental data from which restrictions of anomalous
terms violating this basic principle can be concluded. One important point is, that such
anomalous terms are predicted from loop gravity as well as from string theories. Most
accurate data can be obtained from future astrophysical observations. Also, laboratory
tests like spectroscopy give constraints on the anomalous terms.

1 Introduction

Experimental Quantum Gravity, the experimental search for deviations from
Einstein’s General Relativity, which includes also Special Relativity, has been an
very active area in physics since a few years. All unifying theories or quantum
gravity theories predict small modifications from General Relativity, for example
deviations from the 1/r–potential, and violation of the equivalence principle, see
e.g. [1], violation of Lorentz–invariance and violations of the universality of the
gravitational red shift. Violations of these basic principles underlying General
Relativity go together with a modification of the equations of motion for test
matter in the gravitational field.

Questions about the structure of the field equations for quantum objects came
up very recently in the context of quantum gravity: From loop gravity [2] as well
as from string theory [3] there are predictions about quantum gravity induced
modifications of the field equations governing the motion of spin–12–particles.
Up to now the predictions consist in directional derivatives and higher–order
spatial derivatives added to the usual Dirac equation. However, more general
modifications can also be expected. For example, the prediction of second order
spatial derivatives, which is worked out in a distinguished frame of reference,
makes it reasonable to expect also second order time derivatives. Therefore, it is
important to study experimental consequences of general non–standard modifi-
cations of the Dirac equation. In order to have a guiding principle at hand which
tells us something about the meaning and the physical consequences of certain
modifications of the usual Dirac equation, we will study these modifications in
the frame of a constructive axiomatic derivation of the Dirac equation.
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In that approach it is possible to derive the Dirac equation from a very few
fundamental operational principles which can be tested directly in experiments.
The derivation of the Dirac equation can be divided into two parts: The first part
consists in the derivation of a system of linear hyperbolic field equations, which
we call a generalized Dirac equation, from four fundamental principles which the
quantum field has to obey, namely (i) the unique deterministic evolution, (ii) the
superposition principle, (iii) finite propagation speed, and (iv) conservation of
probability:

unique deterministic evolution
superposition principle
finite propagation speed
conservation law

⇒
{

generalized Dirac–equation
0 = iγa(x)∂aϕ(x)−M(x)ϕ(x)

Here γa (a = 0, . . . , 3) are some matrices which are not assumed to fulfill a
Clifford algebra. Also M is a matrix.

The usual Dirac equation where the matrices γa fulfill a Clifford algebra and
where M is proportional to the unit matrix, can be derived from the additional
assumptions (v) uniquenes of the null cones, (vi) two helicity states only, and (vii)
uniqueness of the mass shell, compare [4,5]. From these demands we arrive at
a Dirac equation in Riemann–Cartan space–time, where the coupling to torsion
consists in the axial part only. All these principles are operational since they can
be proven directly by experiments.

Some basic features of quantum theory mentioned above have been ques-
tioned previously and subsequently been tested or estimated from some existing
data on atoms, for example. One of these features is the linearity of quantum
theory which is basic in our understanding of all quantum phenomena. A gener-
alized quantum field equation including a non–linear term has been introduced
and discussed by e.g. Shimony [6], and Weinberg [7], and references therein. Shi-
mony himself proposed a neutron interferometry experiment which subsequently
was performed by Shull et al [8] giving a strong restriction on the strength of
a hypothetical nonlinear term in the Schrödinger equation. Also spectral data
of the hydrogen atom have been used for this purpose. Another features which
has been discussed was the conservation of probability [9]. The second part of
assumptions (v) to (vii) manifests itself in a breaking of local Lorentz– and local
position invariance which can be tested by Hughes–Drever, red–shift and atomic
interferometry experiments [10].

In this paper we want to question the first of the four basic principles (i) to
(iv) underlying our basic understanding of quantum theory, namely the unique
deterministic evolution. Here, unique deterministic evolution means that if a
quantum state ψ(x) is prepared at a time t0, then the state is uniquely deter-
mined for times t > t0. This implies that the evolution of quantum states is
described by an evolution equation which contains a first time derivative only,
that is, d

dtψ = Aψ, where A is some operator.
In order to test this principle, we propose a generalization of the usual Dirac

equation by adding a second time derivative which violates this principle. This
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modified Dirac equation is used to calculate modifications of the propagation
of spin–12–particles as well as the corresponding modifications of the atomic
spectrum (The hydrogen spectrum can also be used as justification of the four–
dimensionality of space–time on atomic scales [11]). Up to now, all the experi-
mental results are well explained using the standard theory, that is, the usual
Dirac equation together with quantum corrections. If everything is well explained
using the standard theory, then the modifications of the results due to the modi-
fications in the Dirac equation, can be only smaller than the experimental error.
Therefore, all the modifications can be restricted by comparing the calculated
effects with the accuracy for the various measured effects. – However, future ob-
servation of neutrinos and high energy photons from gamma ray bursts (GRB)
may be capable to distinguish between the various models of the Dirac equation.
Nevertheless, one has to keep in mind, that on cosmological distances the pa-
rameters may depend on the position and thus the effect we are looking for may
be cancelled during the propagation over long distances. Therefore, these obser-
vations have to be complemented by laboratory experiments like spectroscopy.

2 The Model: A Modification of the Dirac Equation

The unique deterministic evolution implies that the evolution equation for the
quantum field is of first order in the time derivative. This means especially, that
the evolution equation is an equation without memory. In terms of a system of
partial differential equations this means that this system should be of first order
in time as it is the case for the Dirac equation i�∂tψ = −i�cα ·∇ψ+ βmc2ψ. If
an evolution possesses a memory, the time derivative has to be replaced by an
operator, for example, an integral expression: Bψ = −i�cα ·∇ψ+ βmc2ψ with,
for example, Bψ =

∫
B(t, t′)ψ(t′)dt′. In the case that the kernel B(t, t′) of that

kind of equation possesses certain properties (it should be analytic), then one can
expand that kernel resulting in a system of partial differential equations with an
infinite sum of terms containing time derivatives of arbitrary order,

∑∞
0 ai∂

i
tψ.

Therefore, if the quantum field does not evolve uniquely deterministic or if
quantum theory has a memory, then the resulting field equation in these cases
contains arbitrary high orders of time derivatives. In a first approximation, this
may be modeled by adding to a conventional quantum field equation like the
Dirac equation or the Schrödinger equation, a term containing a second time
derivative:

i�
∂

∂t
ψ = −i�cα ·∇ψ + βmc2ψ − ε

�
2

mc2
∂2

∂t2
ψ . (1)

In order to make ε dimensionless, we introduced a factor 1/mc2 in the term
containing the last term. Here we assume that ε is constant, i.e. does not depend
on time or position. For ε = 0, the above equation reduces to the usual Dirac
equation. It is clear that the last term in (1) violates Lorentz covariance.
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This modified Dirac equation can be derived from a Lagrangian:

L =
1
2
i�
(
ψ+∂tψ − ∂tψ

+ψ
)

+
1
2
i�c
(
ψ+α ·∇ψ −∇ψ+ ·αψ)−mc2ψ+βψ + ε

�
2

mc2
∂tψ

+∂tψ (2)

=
1
2
i�
(
ψ̄γa∂aψ − ∂aψ̄γ

aψ
)−mc2ψ̄ψ − ε

�
2

mc2
∂tψ̄γ

0∂tψ . (3)

This implies, in particular, that we have a conservation law

0 = ∂tρ+ ∇ · j (4)

with the probability density

ρ = ψ+ψ − ε
�
2

mc2
i
(
∂tψ

+ψ − ψ+∂tψ
)

(5)

and a current

j = �cψ+αψ . (6)

The coupling to the electromagnetic field can, as usual, be introduced by
means of the minimal coupling procedure:

L =
1
2
i�
(
ψ+(∂t + ieφ)ψ − (∂t − ieφ)ψ+ψ

)
+
1
2
i�c

(
ψ+α ·

(
∇− ie

�c
A

)
ψ −

(
∇ +

ie

�c
A

)
ψ+ ·αψ

)
−mc2ψ+βψ + ε

�
2

mc2
(∂t − ieφ)ψ+(∂t + ieφ)ψ . (7)

The corresponding modified Dirac equation is

i�∂tψ = −i�cα ·
(

∇− ie

�c
A

)
ψ + βmc2ψ + eφ+ ε

�
2

mc2
(∂t − ieφ)2ψ . (8)

3 Plane Wave Solutions and Neutrino Propagation

It is not difficult to present an exact plane wave solution for (1). Inserting the
ansatz ψ = exp (i(Et− p · x)) a into (1) gives Ea =

(
α · pc+ βmc2 + ε

mc2E
2
)
a,

or1

0 =
(
γ0
(
E − ε

mc2
E2
)
+ γâpâc−mc2

)
a . (9)

The corresponding dispersion relation reads(
E − ε

mc2
E2
)2
− p2c2 = m2c4 (10)

1 Indices with a hat run from 1 to 3 and, for example, pâ is represented by p.
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which possesses the four solutions

E
(1)
± =

mc2 −
√

m2c4 ∓ 4εmc3
√
p2c2 +m2c2

2ε

E
(2)
± =

mc2 +
√

m2c4 ± 4εmc3
√
p2c2 +m2c2

2ε
.

(11)

For small ε this reduces to

E
(1)
± = ±c

√
p2 +m2c2 + ε

(
mc2 +

p2

m

)
E
(2)
± =

mc2

ε
± c
√
p2 +m2c2 − ε

(
mc2 +

p2

m

)
.

(12)

That means that for ε→ 0 the solutions E(1)
± reduce to the well–known solutions.

The other two solutions are new and diverge for small ε. However, this large
quantity will drop out by considering energy differences. The ± in the solutions
for the energy corresponds to positive/negative energies, the (1), (2) corresponds
to the two solutions which come up with ε �= 0.

In the high energy limit m→ 0 we get (p = |p|)

E
(1)
± = ±cp± m2c3

2p
+ ε

(
mc2 +

p2

m

)
E
(2)
± =

mc2

ε
± cp± m2c3

2p
− ε

(
mc2 +

p2

m

)
.

(13)

In the low energy limit p→ 0 we get instead

E
(1)
± = ±mc2 ± p2

2m
+ ε

(
mc2 +

p2

m

)
E
(2)
± =

mc2

ε
±mc2 ± p2

2m
− ε

(
mc2 +

p2

m

)
.

(14)

The exact expression for the group velocity reads

(v(1)± )â = ± pâc√
p2 +m2c2

√
1∓ 4 ε

mc

√
p2 +m2c2

(v(2)± )â = ± pâc√
p2 +m2c2

√
1± 4 ε

mc

√
p2 +m2c2

.
(15)

Therefore, for positive energies, particles with the same momentum but with
different directions propagate with different velocities (the same is true for par-
ticles with negative energies). This property can be used for a comparison with
data from neutrino propagation.
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For small ε we get from (15)

(v(1)± )â = ± pâc√
p2 +m2c2

+ 2ε
pâ
m

(v(2)± )â = ± pâc√
p2 +m2c2

− 2ε
pâ
m

,
(16)

for m→ 0

(v(1)± )â = ±pâ
p
c∓ m2c3

2p3
pâ + 2ε

pâ
m

(v(2)± )â = ±pâ
p
c∓ m2c3

2p3
pâ − 2ε

pâ
m

,

(17)

and for pâ → 0

(v(1)± )â = ±pâ
m

+ 2ε
pâ
m

(v(2)± )â = ±pâ
m
− 2ε

pâ
m

.
(18)

For a comparison with data from the propagation of neutrinos, which may
be produced in connection with GRBs, we use (17). We compare the arrival time
of neutrinos with the arrival time of light over a distance of l = 1010 ly. If the
neutrinos and the photons are produced during the same event, and if we take
the mass of the neutrinos to be 1 eV and the momentum p = 105 GeV, then we
get as difference of the time–of–arrival

∆t =
l

c
− l

v
(1,2)
+

≈ l

c

(
m4c4

8p4
± 2ε

p

mc

)
≈ (4× 10−9 ± 6.4 ε 1031

)
sec . (19)

The first term can be neglected compared to the second one, so that we get
|∆t| = |ε|6.4× 1031 sec. Asssuming a temporal structure of the source of about
a millisecond [12] and assuming a null–result, then we can get from observations
of the propagation of neutrinos and of photons the estimate

|ε| ≤ 1.6× 10−35 . (20)

Thus, neutrino observations in the future have the potentiality of high precision
determination of the parameter ε. Any |ε| larger than that given by (20) should
be detectable by this means.

In quantum gravity theories, |ε| is proportional to the ratio of the Planck
length and some intermediate length, ε = κlp/L where κ is assumed to be of the
order 1 [38]. If we take L = �/p, then, in terms of κ, the above estimate means
|κ| ≤ 1.6 × 10−21 which certainly is in contradiction to the assumption that κ
is of the order 1. From this we conclude, that, if the Dirac equation contains an
additional quantum gravity induced term with the second time derivative of the
neutrino field, then this term should be observable in the future by comparing
neutrino propagation with photon propagation.
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However, from the derivation of the modifications of the Dirac equation [38],
the parameter ε or κ may be constant over the scale L of the “weave” states only.
Therefore, it may be possible that the effect, as we calculated it, may not occur
due to an averaging to zero over larger distances. Consequently, it is necessary
also to perform tests which take place on a small scale only. One kind of such
tests is atomic spectroscopy what we are going to discuss below.

4 The Non–relativistic Limit

4.1 The Non–relativistic Field Equation

First we calculate the modified Pauli equation corresponding to eqn (1). In order
to do so, we first subtract the rest energy from the wave function by means of
the substitution

ψ = e−
i
�
(1+ε)mc2tψ′ (21)

resulting in an elimination of the rest mass in one part of the wave function.
This gives

(1 + 2ε(1 + ε))i�∂tψ′ = −i�cα ·
(

∇− ie

�c
A

)
ψ′ + (β − 1)mc2ψ′ + eφψ′

−ε �
2

mc2
(∂t + ieφ)2ψ′ . (22)

With the projection operators P± := 1
2 (1 ± β) we define the ‘large’ and ‘small’

parts of the wave function: ψ′± = P±ψ′. Multiplication of (1) with P+ and P−
gives the two equations

(1 + 2ε(1 + ε))i�∂tψ′+ = −i�cα ·
(

∇− ie

�c
A

)
ψ′− + eφψ+ − ε

�
2

mc2
(∂t + ieφ)2ψ′+

(23)

(1 + 2ε)i�∂tψ′− = −i�cα ·
(

∇− ie

�c
A

)
ψ′+ + eφψ− − 2mc2ψ′−

− ε
�
2

mc2
(∂t + ieφ)2ψ′− . (24)

As usual, we assume that in the second equation the energies i�∂tψ′− and eφψ−
are small compared with the rest mass term mc2ψ′−. Therefore, we approximate

ψ′− ≈ −
1

2mc
i�α ·

(
∇− ie

�c
A

)
ψ′+ . (25)

Inserting this into the first equation (23) gives

(1 + 2ε(1 + ε))i�∂tψ′+ = − �
2

2m

(
∇− ie

�c
A

)2

ψ′+ + eφψ′+

+
e

mc
Σ ·B − ε

�
2

mc2
(∂t + ieφ)2ψ′+ , (26)
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with Σ =
(
σ 0
0 σ

)
and B = ∇×A. Here σ are the three Pauli matrices. After

division through 1 + 2ε(1 + ε) we get

i�∂tψ
′
+=− �

2

2m∗

(
∇− ie

�c
A

)2

ψ′+ + e∗φψ′+ +
e

m∗c
Σ ·B − ε

�
2

m∗c2
(∂t + ieφ)2ψ′+ ,

(27)

where we absorbed the ε–factor in a redefinition of mass and charge: m∗ :=
(1 + 2ε(1 + ε))m, e∗ = e/(1 + 2ε(1 + ε)).

As our result we get a modified Schrödinger equation for a two–spinor ψ

i�
∂

∂t
ψ = − �

2

2m∗

(
∇− ie

�c
A

)2

ψ + e∗φψ +
e

mc
σ ·B − ε

�
2

m∗c2
(∂t + ieφ)2ψ .

(28)

This equation can also be derived from a Lagrangian

L =
i

2
�(ψ∗(∂t − ieφ)ψ − (∂t + ieφ)ψ∗ψ) (29)

− �
2

2m∗

(
∇ +

ie

�c
A

)
ψ∗ ·

(
∇− ie

�c
A

)
ψ − ε

�
2

m∗c2
(∂t − ieφ)ψ∗(∂t + ieφ)ψ .

Equation (28) also possesses plane wave solutions whose energies are given
by (14). We also have a conservation law

d

dt
ρ+ ∇j = 0 (30)

with the probability

ρ = ψ∗ψ + iε
�

m∗c2

(
∂

∂t
ψ∗ψ − ψ∗

∂

∂t
ψ

)
. (31)

and the current

j =
i�

2m∗
(∇ψ∗ψ − ψ∗∇ψ) . (32)

Like in the Klein–Gordon equation there seems to exist the possibility to get
negative probablities. However, using the Schrödinger equation, we get for the
probability

ρ = ψ∗ψ − ε
1

mc2

(
−i� ∂

∂t
ψ∗ψ + ψ∗i�

∂

∂t
ψ

)
= ψ∗ψ + ε

1
m∗c2

(
�
2

2m∗
∆ψψ + ψ∗

�
2

2m∗
∆ψ

)
. (33)

This quantity is strictly positive if ε < 0, and for ε > 0 this is positive if |ε| is
small enough.
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4.2 Modifications of the Energy Levels

It is possible to calculate the energy levels of the hydrogen atom exactly. In
order to do so we choose A = 0 and φ = φ(r) as the usual spherically symmetric
electrostatic potential:

i�
∂

∂t
ψ = − �

2

2m∗
∆ψ + e∗φψ + ε

1
m∗c2

(
i�

∂

∂t
− eφ

)2

ψ . (34)

We asume a stationary solution, then i�∂tψ = Eψ, and we get from the above
Hamiltonian(

E − ε
1

m∗c2
E2
)
ψ = − �

2

2m∗
∆ψ +

(
e∗ − 2ε

e

m∗c2
E
)
φψ + ε

1
m∗c2

e2φ2ψ . (35)

With ∆ = 1
r2

∂
∂r

(
r2 ∂

∂r

)− 1
r2 L̂

2
, where L̂ is the angular momentum operator with

the eigenvalue equation L̂
2
Y m
l = l(l+1)Y m

l with l = 1, 2, 3, . . . . With a splitting
of the wave function into a radial and an angular part ψ = R(r)Y m

l (ϑ, ϕ) we get
the radial part of the wave equation(

E − ε
1

m∗c2
E2
)
R = − �

2

2m∗

(
1
r2

∂

∂r

(
r2

∂

∂r
R

)
− 1

r2
l(l + 1)R

)
+
(
e∗ − 2ε

e

m∗c2
E
)
φR+ ε

1
m∗c2

e2φ2R . (36)

With the explicit expression for the electrostatic potential φ = −e/r we get by
multiplication with 2m∗/�

2

0 =
d2

dr2
R+

2
r

d

dr
R+

2m∗

�2

(
E − ε

1
m∗c2

E2
)
R

+
2m∗

�2

(
e∗ − 2ε

e

m∗c2
E
) e

r
R− 1

r2

(
l(l + 1) + ε

2e4

�2c2

)
R . (37)

Since the r–dependence is the same as for the usual hydrogen atom, this equation
can be solved using the standard scheme: With

E :=
2m∗

�2

(
E − ε

m∗c2
E2
)
, q :=

2m∗e
�2

(
e∗ − 2εe

m∗c2
E

)
, ] := l(l + 1) + 2εα2

(38)

where α = e2/�c is the fine structure constant, we get for the radial part of the
wave function (

d2

dr2
+

2
r

d

dr
+ E + q

r
− ]

r2

)
R = 0 . (39)

We introduce dimensionless coordinates by

r′ =
r

r0
, −E =

1
4r20

, q′ = qr0 (40)
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and get with R′(r′) := R(r(r′))(
d2

dr′2
+

2
r′

d

dr′
− 1

4
+

q′

r′
− 1

r′2
]

)
R′ = 0 . (41)

We also introduce a new variable f(r′) through

R = e−
1
2 r

′
r′γf(r′) (42)

with a parameter γ which will be specified later. We get the following equation
for the function f :

0 = r
d2f(r′)
dr′2

+ (2γ + 2− r)
df(r′)
dr′

+
(
γ(γ + 1)− ]

r′
+ q′ − γ − 1

)
f(r′) . (43)

In order to solve this equation we specify the value of γ by the requirement that
the term ∼ 1/r′ should vanish:

γ (γ + 1)− ] = 0 . (44)

This gives the two possibilities

γ± = −1
2
±
√

]+
1
4
= −1

2
±
√(

l +
1
2

)2

+ 2εα2 , (45)

and from (43) the differential equations

zf ′′ + (ϑ± − z)f ′ − β±f = 0 , (46)

with

ϑ± = 2γ± + 2 = 1± 2

√
]+

1
4

(47)

β± = γ± + 1− q′ =
1
2
±
√

]+
1
4
− q′ . (48)

Eqn. (46) is the confluent hypergeometric differential equation with the solution
[13]

f(β±, ϑ±, z) =
∞∑
ν=0

(β± + ν)!ϑ±!
β±!(ϑ± + ν)!

zν

ν!
. (49)

which is appropriate for our problem.
It is clear that, in order to get no infinite terms, ϑ± is not allowed to be

a negative integer: ϑ± �= −1,−2, . . . , which is fulfilled if ε �= 0 and |ε| < 1.
For ε = 0 we cannot use the solution ϑ−. In addition, if the sum in (49) does
not terminate, then the solution diverges for large r faster than exp

( 1
2r
′) which

leads to non–normalizable solutions. The condition for a termination of the sum
is β± ∈ Z

−, or

β± = −k, k ∈ N . (50)
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With (48), (40), and (38) we get four energy eigenvalues E

E
(1)
± =

m∗c2

2ε
K2
± − 2εαα∗ e

e∗

K2± − 2εα2 +
m∗c2

2ε

K±
√

K2± + 2εαα∗(1− 2 e
e∗ )

K2± − 2εα2 (51)

E
(2)
± =

m∗c2

2ε
K2
± − 2εαα∗ e

e∗

K2± − 2εα2 − m∗c2

2ε

K±
√

K2± + 2εαα∗(1− 2 e
e∗ )

K2± − 2εα2 (52)

with K± = k− 1
2 ∓
√
(l + 1

2 )
2 + 2εα2 and α∗ = e∗2/�c. To first order in ε we get

E
(1)
+ = m∗c2

(
1
ε
+

α2

2
1

(1− k + l)2
− α4ε

5− 8k + 2l
4(1− k + l)4(1 + 2l)

+O(ε2)
)
(53)

E
(1)
− = m∗c2

(
1
ε
+

α2

2
1

(k + l)2
+ εα4 3− 8k − 2l

4(k + l)4(1 + 2l)
+O(ε2)

)
(54)

E
(2)
+ = −m∗c2

(
α2

2
1

(1− k + l)2
− εα4 5− 8k + 2l

4(1− k + l)4(1 + 2l)
+O(ε2)

)
(55)

E
(2)
− = −m∗c2

(
α2

2
1

(k + l)2
+ εα4 3− 8k − 2l

4(k + l)4(1 + 2l)
+O(ε2)

)
. (56)

The solution is then given by

R(r) = R(r(r′)) = R′(r′) = Ae−
1
2 r

′
r′γf(r′) = Ae−

1
2 r

′
r′γ±f(−k, ϑ±, r′) (57)

where A is a normalization constant and where all parameters depend on l.
For ε �= 0 all these energy values are well defined. Even for very small ε the

first two energies (53,54) are valuable solutions, too, since only energy differences
are observable and thus the first term drops out. However, there are two reasons
which justify to drop the first two solutions: (i) Except the first term mc2/ε, the
upper two sets of energy levels (53,54) are the same as the lower two sets (55,56)
up to sign. For the first two sets of energy levels the continuum is below the
discrete spectrum. By postulating that all particles fall into the lowest energy
level, then all atoms will fall into the continuous part of the spectrum which has
never been observed. (One also can postulate that all particles want to go to the
highest energy level. But due to the symmetry of the two sets of spectra, this
will give the same answer. Therefore we do not consider the upper two sets by
convention.) (ii) We want to describe small modifications of the known energy
levels given for ε = 0. Owing to these reasons, we keep the last two sets of energy
levels.

Defining for E
(2)
+ the principal quantum number n := 1 − k + l, then the

energy levels are given by

E
(2)
+ = −m∗c2α

2

2

(
1
n2

+ εα2
(

3
2n4
− 4

n3(1 + 2l)

)
+O(ε2)

)
(58)
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and if we define for E
(2)
− the principal quantum number n := k + l, then the

energy levels are

E
(2)
− = −m∗c2α

2

2

(
1
n2

+ εα2
(

3
2n4
− 4

n3(1 + 2l)

)
+O(ε2)

)
, (59)

where mc2α2/2 is the Rydberg constant Ry. It is remarkable, that in both cases
we get the same scheme of energy differences. Therefore, at this order we cannot
distinguish between energies E+ and E−.

There are two differences between this result and the usual spectrum of the
hydrogen atom: (i) No degeneracy with respect to l. (ii) Additional 1/n4– and
1/n3–terms. From (58) we get for the Lyman–series with n = 1 and l = 0 as
ground state, for example, the energy differences

∆ELyman = Ry

(
1− 1

n2
+ εα2

(
3
2

(
1− 1

n4

)
− 4

(
1− 1

n3(1 + 2l)

))
+O(ε2)

)
.

(60)

The additional terms 1/n4 and n3(1 + 2l) modify the structure of this series.
The ionization energy is given by n→∞ and is

Eionization = Ry

(
1− 5

2
εα2 +O(ε2)

)
. (61)

From numbers related to ∆ELyman or Eionization one can draw estimates on the
value of ε.

Since the accuracy δ∆E/∆E for recent measurements, see for example [14],
is of the order of 10−13 which agrees completely with the conventional theory,
we can conclude that the relative deviation from the usually calculated energy
has to be smaller than this uncertainty:

δ∆E

∆E
= εα2

∣∣− 5
2 − 3

2n4 + 4
n3

∣∣
1− 1

n2

≤ 10−13 . (62)

This means that

ε ≤ 10−13
1
α2

1− 1
n2∣∣− 5

2 − 3
2n4 + 4

n3

∣∣ = 10−13
1
α2

3
8 + 3

8

≈ 7× 10−10 . (63)

In terms of a κ as introduced after Eqn. (20) we have the estimate κ ≤ 7× 104

which is outside the assumption that κ is of the order unity. Therefore, the
accuracy of atomic spectroscopy is still at least five orders of magnitude too
small in order to be able to detect any influence of quantum gravity on atomic
levels.

5 Conclusion

We have shown that an additional term in the Dirac equation containing a sec-
ond time derivative, as it is motivated from quantum gravity, influences neutrino
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propagation and atomic spectroscopy. While neutrino propagation may be ca-
pable to ‘see’ this additional term, the accuracy of spectroscopy has still to be
improved by five orders of magnitude in order to be sensitive to this term.

A clear difficulty with the hydrogen spectrum is that, precisely, it cannot be
calculated exactly with an arbitrary accuracy with the present state–of–the–art.
There is a number of corrections to the Dirac solutions: recoil, QED, finite nu-
cleus size, see [16] for a review. These corrections scale with 1/n3 and amount
to a few kilohertz. They are very difficult to calculate and there are still some
discrepancies between theoretical results. Fortunately, some combinations of fre-
quencies are independent of these corrections at their leading order and can be
used for higher accuracies. Concerning the measurements themselves, there is
presently a very rapid evolution towards much higher accuracies. For example,
it was shown recently that, because of the extreme regularity of the frequency
comb generated by femtosecond lasers over a very wide spectrum [17], they
could be used to compare frequencies of oscillators which differ by several or-
ders of magnitude. This provides a way to compare many transition frequencies
of the hydrogen atom between themselves and with microwave clocks, with the
potential accuracy of the cesium fountain clock which is presently 10−15 and
should improve quickly by another order of magnitude. Also, the techniques to
interrogate narrow transitions of cold atom hydrogen by sub–Doppler methods
or atom interferometry have improved very significantly either in cold thermal
beams (Hänsch and coworkers in Garching, Biraben and coworkers in Paris) or
in clouds generated from Bose–Einstein condensates (Kleppner and coworkers at
MIT). A subkilohertz linewidth is presently achieved for the 1S-2S two–photon
transition [17] and could still be reduced by one or two orders of magnitude in
the near future. The hydrogen atom is thus potentially a universal clock by itself
covering the full spectrum from UV to microwaves (hydrogen maser).
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How Does the Electromagnetic Field Couple
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Abstract. The coupling of the electromagnetic field to gravity is an age-old problem.
Presently, there is a resurgence of interest in it, mainly for two reasons: (i) Experimental
investigations are under way with ever increasing precision, be it in the laboratory or by
observing outer space. (ii) One desires to test out alternatives to Einstein’s gravitational
theory, in particular those of a gauge-theoretical nature, like Einstein-Cartan theory
or metric-affine gravity.— A clean discussion requires a reflection on the foundations
of electrodynamics. If one bases electrodynamics on the conservation laws of electric
charge and magnetic flux, one finds Maxwell’s equations expressed in terms of the
excitation H = (D,H) and the field strength F = (E,B) without any intervention of
the metric or the linear connection of spacetime. In other words, there is still no coupling
to gravity. Only the constitutive law H = functional(F ) mediates such a coupling. We
discuss the different ways of how metric, nonmetricity, torsion, and curvature can come
into play here. Along the way, we touch on non-local laws (Mashhoon), non-linear ones
(Born-Infeld, Heisenberg-Euler, Plebański), linear ones, including the Abelian axion
(Ni), and find a method for deriving the metric from linear electrodynamics (Toupin,
Schönberg). Finally, we discuss possible non-minimal coupling schemes.

1 Introduction

General relativity was proposed in 1915. One of its predictions was the bending
of light rays of stars in the gravitational field of the Sun. This effect was verified
observationally soon afterwards by Dyson et al. in 1920 and put, as a result,
Einstein’s theory in the forefront of gravitational research.

Within the framework of general relativity, a light ray can be extracted from
classical electrodynamics in its geometrical optics limit, i.e., for wavelengths
much smaller than the local curvature radius of space. Accordingly, the bending
of light can be understood as a result of a nontrivial refractive index of spacetime,
see Skrotskii et al. [81,89], due to the coupling of the electromagnetic field F to
the gravitational field g. Classically, we have in nature just these two fundamen-
tal fields F and g, the weak and the strong fields being confined to microphysical
dimensions of 10−19m or 10−15m, respectively. Therefore, the coupling of F and
g is of foremost importance in classical physics.

C. Lämmerzahl, C.W.F. Francis, and F.W. Hehl (Eds.): LNP 562, pp. 479–504, 2001.
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The conventional way that coupling is achieved is to display the Maxwell-
Lorentz equations of vacuum electrodynamics in the (flat) Minkowski world of
special relativity theory in Cartesian coordinates. For this purpose, usually the
formalism of tensor analysis (Ricci calculus) is used, see [78]:

F ij
,j = Ii , Fij,k + Fjk,i + Fki,j = 0 . (1)

Here Fij = −Fji = (F01, F02, F03, F23, F31, F12) = (E,B) is the electromagnetic
field strength, Ii the electric 4-vector current, and

F ij := gikgjl Fkl , (2)

with gij as the contravariant components of the metric. The commas in (1)
denote partial differentiation with respect to the local spacetime coordinates xi.

If we switch on gravity, the flat Minkowski world becomes curved, the space-
time geometry now being a Riemannian geometry with a variable metric gij(x)
of Minkowskian signature (+ − −−). The coupling of the Maxwell-Lorentz set
(1) to gravity is now brought about by the comma goes to semicolon rule ,→ ;
(see [52]), where the semicolon represents the covariant derivative ∇i ≡ ;i with
respect to the Riemannian connection (“Levi-Civita connection”):

F ij
;j = Ii , Fij;k + Fjk;i + Fki;j = 0 . (3)

This translation rule from special to general relativity is also alluded to as min-
imal coupling with the additional understanding that the components of the
metric in (2) become spacetime dependent fields.

The metric field gij(x), entering (3) via (2) and via the covariant derivatives,
i.e., via the semicolons, has to fulfill the Einstein field equation,

Ricij − 1
2
gij Rick

k = κ
(

Max

T ij +
mat

T ij

)
, (4)

with

Ricij := Rkij
k ,

Max

T i
j :=

√
ε0
µ0

(
−FikF

jk +
1
4
δji FklF

kl

)
. (5)

Here Rijl
k is the curvature and

mat

T ij the material energy-momentum tensor. The
coupled Einstein-Maxwell system describes correctly a wealth of experiments, in
particular the gravitational bending of light, the gravitational redshift, the time
delay of radar pulses in the gravitational field of the Sun, and the gravitational
lensing and microlensing of starlight in the gravitational field of galaxies.

But in all these experiments, we study the propagation of light along null-
geodesics in a prescribed (and perhaps slowly varying) gravitational field which is
a solution of the Einstein vacuum equation – and not of the electro-vacuum equa-
tion. We could call this the non self-consistent Einstein-Maxwell theory. In the
solar system, e.g., the Schwarzschild metric is taken as solution of the Einstein
vacuum equation and the motion of a “photon” is described by the null geodesic
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equation on this background. A true novel effect of the Einstein-Maxwell theory
would be, e.g., the generation of electromagnetic waves by gravitational waves.
Because of their smallness, no such effects were ever observed. Accordingly, the
interaction of a classical electromagnetic field Fij in the form of a lightray with
a prescribed gravitational field gij(x) is well described by means of Eqs.(3).
Nevertheless, further consequences of these equations need to be compared with
experiment as soon as more sensitive measuring methods are available.

2 On the Equivalence Principle

According to Einstein’s equivalence principle, see [20], gravity can be locally
simulated in a gravity-free region of spacetime by going over from the Cartesian
coordinates, anchored in an inertial frame of reference (including an intertial
clock) and used in (1), to arbitrary curvilinear coordinates yielding a non-inertial
frame in general, as in (3). In this context, the metric gij , occurring in (2) and in
the semicolons of (3), is understood as a flat metric in curvilinear coordinates.
Thus, the minimal coupling can be interpreted, in a first step, just as a coordi-
nate transformation from Cartesian to curvilinear coordinates. And, moreover,
it identifies the metric as the gravitational potential.

On the other hand, let us assume that we are in a region with gravity and
(2) and (3) are valid together with the Einstein equation for the metric. Then,
also according to Einstein’s equivalence principle, we must be able to pick suit-
able coordinates such that locally the equations look like in special relativity
in Cartesian coordinates. In Riemannian geometry, the local coordinates are
called Riemannian normal (hence geodesic) coordinates at one point P , if the
Christoffel symbols

Γij
k :=

1
2
gkl (gil,j + gjl,i − gij,l) (6)

vanish at P and and the metric becomes Minkowskian:

Γij
k|P ∗= 0 , gij |P ∗= diag (+1,−1,−1,−1) . (7)

Accordingly, the semicolon becomes a comma and the metric in (2), at one given
point, looks flat.

Still, the curvature is non-vanishing, of course: Rijk
l|P �= 0. The equations

look flat since they contain only first derivatives. If they contained second deriva-
tives, then the semicolons goes to comma rule and its reverse would not work
since on that level not only the Christoffels enter but potentially also the curva-
ture which, in contrast to the Christoffels, is a tensor and cannot be nullified by
means of a suitable choice of coordinates. For that reason, the minimal coupling
procedure, being in this context an expression of the equivalence principle, must
be applied only to first order differential equations. The safest thing is then to
apply it, as a rule, only on the level of a Lagrangian, since there ordinarily only
first-order expressions are allowed for. Non-minimal couplings of the gravita-
tional field to electromagnetism have also been investigated, see Prasanna [74],
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Buchdahl [8], Goenner [23], and Müller-Hoissen [58–60], for example, or for light
rays in non-minimally coupled theories, see Drummond and Hathrell [17], but
the price one has to pay is to introduce a new constant of nature; and there is
no evidence for such a constant in nature – unless one takes the Planck length
itself. We will come back to these questions in Sec.7.

Therefore we can conclude that the equivalence principle and minimal cou-
pling work well for the Maxwell-Lorentz equations (1) and that they lead to
experimentally established equations.

Wave Equation for the Electromagnetic Field Strength. We hasten to
add that, within the framework of the minimally coupled Maxwell-Lorentz equations,
we find 2nd derivatives if we derive the wave equation for the electromagnetic field
strength F — and then also curvature terms are expected to emerge. This is exactly
what happens, as already found by Gordon [24] and Eddington [18].

In the framework of exterior calculus (see Frankel [21]), let us consider the elec-
tromagnetic field strength 2-form F = 1

2 Fij dx
i ∧ dxj . In Maxwell-Lorentz vacuum

electrodynamics, it satisfies dF = 0, ε0d �F = 1
c
J . We denote the codifferential by

δ := �d �. Then we find, with the wave operator (d’Alembertian)

:= δ d+ d δ , (8)

and by using the Maxwell-Lorentz equations, the wave equation

F =
1
ε0c

d �J , (9)

see [53]. The left hand side of this equation, in terms of components, can be determined
by substituting (8):

F =
1
2

(
∇k∇k Fij + 2Ric [i

k Fj]k −Rkl
ij Fkl

)
dxi ∧ dxj . (10)

Accordingly, minimal coupling can lead to curvature terms of a prescribed form.1

3 A Caveat

Soon after general relativity had been proposed, it became clear, see Einstein
[19], that one can introduce as auxiliary variables the densities

F ij :=
√
−g(x) gik(x) gjl(x)Fkl , I i :=

√
−g(x) I i , (11)

with g(x) := det gij(x), in terms of which the Maxwell-Lorentz equations (1) can
be rewritten in a metric-free way as

F ij
,j = I i , Fij,k + Fjk,i + Fki,j = 0 . (12)

1 Of course, we could have non-minimal coupling as, e.g., in F+γ
(
eα�eβ�Rαβ

)∧F =
1

ε0c
d �J , see Sec.7.
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Similarly, the charge conservation law Ii;i = 0 can be put in the form

Ii,i = 0 . (13)

The metric enters only via the densities defined in (11). In fact, if we started from
the set (12) in special relativity right away, then no comma goes to semicolon
rule would have been necessary: These equations are generally covariant, they
are valid in arbitrary curvilinear coordinates, be it in the framework of special
or general relativity theory.

In the calculus of exterior differential forms (Cartan calculus), see Frankel
[21], these equations can be formulated very succinctly. We introduce the electric
current as odd 3-form,

J := ρ− j ∧ dt =
1
3!

Jijk dx
i ∧ dxj ∧ dxk , (14)

the electromagnetic excitation as odd 2-form

H = D −H ∧ dt =
1
2!

Hij dx
i ∧ dxj , (15)

and the electromagnetic field strength as even 2-form

F = B + E ∧ dt =
1
2!

Fij dx
i ∧ dxj . (16)

Then (12) reads
dH = J , dF = 0 , (17)

with
dJ = 0 . (18)

The set (17) represents the Maxwell equations. They are independent of metric
and connection. The constitutive relation for the vacuum reads

H =
√

ε0
µ0

OF , (19)

where the star ` represents the metric-dependent and odd Hodge duality oper-
ator. Eq.(19) corresponds to (11)1 and Ii can be related to the components of
J ,

F ij =
1
2!

√
µ0
ε0

εijklHkl , Ii = 1
3!

εijklJjkl , (20)

with εijkl = ±1, 0, the totally antisymmetric Levi-Civita tensor density.
Now the equivalence principle looks empty: Since the Maxwell equations (17)

are formulated in a coordinate and frame independent way, they are valid in this
form in arbitrary coordinate systems and frames, be it in a flat or in a curved
spacetime. Only the constitutive relation (19) “feels”, up to a conformal factor,
the presence of a flat or a non-flat metric, i.e., the constitutive relation couples to
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the conformally invariant part of the metric. The coupling of electromagnetism
to gravity becomes almost trivial. Is all this just a mathematical trick, which
distracts from the physical content of Maxwell’s theory, or is it more?

One further observation hints also at the need for clarification. The Einstein-
Cartan theory of gravity is a viable gravitational theory, see [30,51,86]. It is the
simplest model of the metric-affine gauge theory of gravity, see [31,25]. In the
Einstein-Cartan theory, spacetime is described by means of a Riemann-Cartan
geometry with torsion and curvature.2 If we couple (3) to gravity, do we have to
use the semicolons as covariant derivatives with respect to the Riemann-Cartan
connection or still with respect to the Christoffels, see [14]? In the context of
(17), this question cannot even be posed, since the exterior derivative d is all
what is needed. Are then the equations (17) misleading as a starting point for
coupling to gauge gravity? What could be the appropriate starting point?

Provided one formulates Maxwell’s theory and its coupling to gravity in
terms of a Lagrangian with the electromagnetic potential A as variable, gauge
covariance of the formalism results in (17) cum (19), as was pointed out by Benn,
Dereli, and Tucker [5]. However, we would like to have some more immediate
insight into the structure of electromagnetism as induced by experiment even
without having a variational formulation at our disposal.

4 Electric Charge and Magnetic Flux Conservation

The metric is a quantity which allows to define lengths and angles in spacetime.
There are, however, laws in physics which don’t require the knowledge of a
metric. Take the conservation law of electric charge as an example. Mark a 3-
dimensional simply connected submanifold Ω3. We know from experiment that a
possible electric charge inside Ω3 is composed of charge “quanta”, i.e., there is an
integer number of elementary charges in Ω3. Recent advances in technology made
it possible, see [13,44], to trap and to count single electrons and protons. Thus,
as soon as we have such quanta available, we can rely on counting procedures,
see Post [73], the use of a meter stick or a chronometer is superfluous under such
circumstances.

Electric charge conservations is experimentally well-established and is one of
the pillars electromagnetism rests on. We formulate it, following Kottler-Cartan-
van Dantzig, see [72,87] and also [32], most appropriately as an integral law.
According to (14), we assume the existence of the odd electric current 3-form J .
We take charge conservation as axiom 1, that is, J integrated over a closed 3-
dimensional hypersurface Ω3 has to vanish, if this hypersurface is the boundary
of a connected 4-volume Ω4:∫

∂Ω4

J =
∫
Ω4

dJ = 0 , or dJ = 0 . (21)

2 A proper discussion of the equivalence principle in the context of Einstein-Cartan the-
ory requires the introduction of local coframes, see [25,27,38]. Being concerned here
only with electromagnetism, it is sufficient to use natural, i.e., holonomic coframes.
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Here we applied the Stokes theorem.
If (21) is assumed to be valid

∫
C3

J = 0 for all three-cycles ∂C3 = 0, C3 �=
∂Ω4, then, according to a theorem of de Rham, J is exact, see [73]. Thus the
inhomogeneous Maxwell equation is a consequence,

J = dH , (22)

with the odd 2-form H of the electromagnetic excitation, see (15). The excitation
is only determined up to an exact form. Nevertheless, the electric excitation D
can be measured by means of Maxwellian double plates as charge per unit area,
the magnetic excitation H by means of a small test coil, which compensates
the H-field to be measured, as current per unit length. This is possible since in
theses null experiments vanishing field strength F implies vanishing excitation
H, see [32]. In other words, the extensive quantities D and H – and thus the
4-dimensional excitation H – have an operationally significance of their own,
since they are related to charge at rest or in motion, respectively. Accordingly,
the somewhat formalistic introduction of the densities in (11) has now been
legitimized as a transition to operationally meaningful additive quantities. Note
that up to now only the differential structure of the spacetime was needed, a
metric has not been involved.

Let us choose a field of 4-frames eα and consider the motion of a point particle
with respect to the reference frame thus defined. As axiom 2 one can take an
operational definition of the electromagnetic field strength F via the Lorentz
force density

fα = (eα3F ) ∧ J . (23)

The interior product (contraction) is denoted by 3. The force density fα is a
notion from classical mechanics. It is an odd covector-valued 4-form. Accordingly,
Eq.(23) can be read as a definition of the even 2-form F , see (16). Again, we
don’t need a metric. And we know the recipe of how to proceed in the same
manner.

That
∫
Ω2

F can be interpreted as magnetic flux is obvious if we choose Ω2 as
a ‘spacelike’ surface (strictly, at this point we don’t know what spacelike means;
we will come back to this later). In superconductors under suitable circumstances
we can count (in an Abrikosov flux line lattice) quantized magnetic flux lines.
This suggests that magnetic flux is a conserved quantity (axiom 3):∫

∂Ω3

F =
∫
Ω3

dF = 0 or dF = 0 . (24)

In this way, by means of the axioms (21), (23), and (24), we recovered the
fundamental structure of Maxwell’s theory: dH = J, dF = 0 . This is what had
been called metric-free electrodynamics.3 What is missing so far is the relation
between the excitation H and the field strength F , and it is exactly there where
the metric, i.e., the gravitational potential comes in.
3 Stachel [83] calls it generalized electrodynamics. We don’t follow this suggestion,
since Maxwell’s equations were originally given in terms of (D,H) and (E, µH) in
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5 No Interaction of Charge
and Flux “Substrata” with Gravity

We now understand that the inhomogeneous Maxwell equation dH = J , as
an expression of electric charge conservation, cannot be influenced by gravity,
i.e., by the metric tensor g, or, in the case of metric-affine gravity or its specific
subcases, such as Einstein-Cartan theory, by the connection Γ of spacetime. The
electric charge substratum of spacetime has rules of its own. Spacetime can be
deformed by the presence of metric and connection, but the charge substratum
and the net electric charge to be attributed to a prescribed 3-dimensional (3D)
volume won’t change. Thus the additivity 3D volume-wise of the charge lays
at the foundation of the Maxwellian framework. And it translates into the 2D
additivity of the integrated excitation

∫
Ω2

H – this being the reason why one
uses this integral for the operational interpretation of H.

Similar arguments can be advanced for the homogeneous Maxwell equation
dF = 0. However, first of all it should be stressed that the axiomatics we are
using strongly suggests the non-existence of magnetic charges. If there were
magnetic charges, then we would have no reason to believe in electric charge
conservation either; compare for this argument axiom 1, Eq.(21), with axiom 3,
Eq.(24). Conventionally, the inhomogeneous equation dH = J is seen in analogy
to the homogeneous one dF = 0. But not so in the framework of our axiomatics
which has a firm empirical basis. We put dJ = 0 in analogy to dF = 0. The whole
historical development of electromagnetism, starting with Ørsted and Ampère,
points to the elimination of the phenomenologically introduced magnetic charges.
Most recent experiments, see [1,29], exclude magnetic charges with very good
precision. Thus theoretical as well as experimental evidence speak against the
existence of magnetic charges.

Having said this, we hasten to add that, nevertheless, there is some kind
of magnetic substratum in spacetime, namely the magnetic flux

∫
Ω2

F . It is a
substratum of its own right. The fluxoids, the quantized magnetic flux lines in
superconductors, see [84], do convey a clear message. Besides electric charge4,
magnetic flux5 (and not magnetic charge) has an independent standing in elec-
tromagnetism, too. Thus rightfully, it is governed by an own axiom, namely
axiom 3.

Axiom 3 is again a conservation theorem. In contrast to axiom 1, which has
a fermionic smell, axiom 3 is more of a bosonic nature. Moreover, magnetic flux
adds up 2D area-wise. For this reason, magnetic flux is represented by a 2-form
and not, like the charge, by a 3-form. Accordingly, there are essential differ-
ences between these two conservation laws which express the peculiarities of the

a form ‘isomorphic’ to the (1 + 3)-decomposition of dH = J and dF = 0, see [50].
Therefore, the “generalized” Maxwell equations, dH = J and dF = 0, correspond
in actual fact, just to Maxwell’s equations (modulo the substitution B → µH). And
this is how we will name them.

4 SI-unit Coulomb, elementary charge e = 1.60217733 × 10−19 C.
5 SI-unit Weber, elementary fluxoid h/(2e) = 2.06783461 × 10−15 Wb.
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electromagnetic phenomena. Electric and magnetic effects enter the Maxwellian
framework in an asymmetric way, in spite of all that talk about a duality between
electricity and magnetism. But there is also a similarity in that both axioms are
formulated as integral conservation laws. The possibility to count the fluxoids
assures us that axiom 3 has to be again a law free of metric and connection.

Incidentally, there is a nice visualization of the fundamental quantities en-
tering electrodynamics. If one describes the quantum Hall effect for low lying
Landau levels, then the concept of a composite fermion is very helpful: it consists
of one electron and an even number of fluxoids is attached to it, see Jain [41,42]
and [43]. Isn’t that a very clear indication of what the fundamental quantities
are in electrodynamics? Namely, electric charge (see axiom 1) and magnetic flux
(see axiom 3), see also Nambu [61] in this general context.

Our conclusion is then that, as long as we opt for electric charge and mag-
netic flux conservation, the Maxwell equations in gravity-free regions, i.e., in
the Minkowski spacetime of special relativity, read dH = J and dF = 0; they
remain the same irrespective of the switching on of gravity, be it in Einstein’s
theory, in metric-affine gravity (see [76]), or in any other geometrical theory of
gravity.

6 Constitutive Law of Electrodynamics
and Its Relation to Gravity

After having discussed extensively that gravity does not influence the Max-
well equations, we eventually turn to the constitutive law via which gravity
does influence electrodynamics. It is true, the charge substratum and the flux
substratum themselves do not couple to gravity, as we have shown in the last
section. However, the interrelationship between both substrata is affected by
gravity. Metaphorically speaking, the “flow” of each of the substrata is ruled by
a particular gravity-independent conservation theorem, but the flows of electric
charge and magnetic flux are coupled via a gravity-dependent constitutive law
since, in the end, magnetism has to be expressed in terms of electricity.

Let us choose arbitrary local spacetime coordinates xi. Then we have,

H =
1
2
Hij dx

i ∧ dxj , F =
1
2
Fij dx

i ∧ dxj . (25)

We will turn first to the electrodynamics of material media in order to develop
some intuition on the concept involved, but eventually, it will be the vacuum, be
it in inertial or non-inertial frames, which will occupy the center of our interest.

6.1 Non-local

Moving macroscopic matter defines a (1 + 3)-splitting of spacetime specified by
a well defined average 4-vector velocity field u which describes the congruence
of worldlines of the flow of the medium. Such a vector field can be defined
operationally from the motion of matter as follows.
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Let a 3–dimensional arithmetic space R3 be equipped with the coordinates
ξa, a = 1, 2, 3. We will use these coordinates (known as Lagrange coordinates in
continuum mechanics) as labels which enumerate elements of a material medium.
A smooth mapping x(0) : R3 → X4 into the spacetime defines a 3–dimensional
space domain (hypersurface) V which represents the initial distribution of mat-
ter. In local spacetime coordinates, this mapping (or labeling) is given by the four
functions xi(0)(ξ

a). It should be preserved at any time, i.e. along any worldline
of a particular element its labels ξa are constant.

Given the initial configuration V of matter, we parameterize dynamics of
the medium by the “time” coordinate τ which is defined as the proper time
measured along an element’s worldline from the original hypersurface V . The
resulting local coordinates (τ, ξa) are usually called the normalized comoving
coordinates. Thus finally, the motion of matter is described by the functions
xi(τ, ξa). Subsequently, we define the 4–velocity vector field by

u := ∂τ =
(
dxi

dτ

)
ξa=const

∂i . (26)

Evidently, a family of observers comoving with the matter is characterized by
the same timelike congruence xi(τ, ξa). They are making physical (in particular,
electrodynamical) measurements in their local reference frames which drift with
the material motion.

One says that a medium, moving in general, has dispersion properties when
the electromagnetic fields produce non-instantaneous polarization and magne-
tization effects. The most general linear constitutive law is then given, in the
comoving system, by means of the integral

Hij(τ, ξ) =
1
2

∫
dτ ′Kij

kl(τ, τ ′)Fkl(τ ′, ξ) . (27)

The coefficients of the kernel Kij
kl(τ, τ ′) are called the response functions. We

expect the metric to be involved in their set-up. Their form is defined by the
internal properties of matter and by the motion of a medium.

Mashhoon [49] has proposed a physically very interesting example of such a
non-local electrodynamics in which non-locality comes as a direct consequence of
the non-inertial dynamics of observers. In this case, instead of (25), one should
use the field expansions

H =
1
2
Hαβ ϑα ∧ ϑβ , F =

1
2
Fαβ ϑα ∧ ϑβ (28)

with respect to the coframe of a non-inertial observer ϑα = ei
α dxi. The consti-

tutive law is then replaced by

Hαβ(τ, ξ) =
1
2

∫
dτ ′Kαβ

γδ(τ, τ ′)Fγδ(τ ′, ξ) , (29)

and the response kernel in (29) is now defined by the acceleration and rotation
of the observer’s reference system. It is a constitutive law for the vacuum as
viewed from a non-inertial frame of reference.
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Mashhoon imposes an addititional assumption that the kernel is of convolu-
tion type, i.e., Kαβ

γδ(τ, τ ′) = Kαβ
γδ(τ − τ ′). Then the kernel can be uniquely

determined by means of the Volterra technique, and often it is possible to use
the Laplace transformation in order to simplify the computations. Unfortunately,
although Mashhoon’s kernel is always calculable in principle, in actual practice
one normally cannot obtain K explicitly in terms of the observer’s acceleration
and rotation.

Preserving the main ideas of Mashhoon’s approach, one can abandon the
convolution condition. Then the general form of the kernel can be worked out
explicitly (u is the observer’s 4-velocity):

Kαβ
γδ(τ, τ ′) =

1
2
εαβ

λ[δ
(
δ
γ]
λ δ(τ − τ ′)− u3Γλγ](τ ′)

)
. (30)

The influence of non-inertiality is manifest in the presence of the connection
1-form. The kernel (30) coincides with the original Mashhoon kernel in the case
of constant acceleration and rotation, but in general the two kernels are differ-
ent [55]. Perhaps, only the direct observations would establish the true form of
the non-local constitutive law. However, such a non-local effect has not been
confirmed experimentally as yet.

6.2 Non-linear

But the constitutive law can also be non-linear (or non-local and non-linear at
the same time). In the local and non-linear Born-Infeld electrodynamics [6], with
the dimensionfull parameter fe as maximal attainable electric field strength, we
have

H = − ∂VBI
∂F

∼
∂
√
− det |gkl + 1

fe
Fkl|

∂F
. (31)

The metric as symmetric second rank tensor enters here in a very natural way. It
adds up with the antisymmetric electromagnetic field to an asymmetric tensor
– much in the way Einstein had hoped to find for his unified field theories of
gravity and electromagnetism. By differentiation, we find

H =
√

ε0
µ0

OF + 1
2f2

e

O(F ∧ F )F√
1− 1

f2
e

O(F ∧ OF )− 1
4f4

e
[O(F ∧ F )]2

, (32)

now the metric being absorbed in the (odd) Hodge star operator, see [21]. For
fe → ∞, we recover the conventional local and linear Maxwell-Lorentz theory
for vacuum with H =

√
ε0
µ0

OF . The Born-Infeld electrodynamics is presently

used as a toy model in string theories, see [22]. The problem with Born-Infeld
electrodynamics is that, in contrast to Maxwell’s theory, it defies quantization.
It is an interesting model, but nothing like an established theory.

A similar example is the non-linear Heisenberg-Euler electrodynamics [34].
Quantum electrodynamical vacuum fluctuations yield corrections to Maxwell’s
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theory that can be accounted for by an effective constitutive law constructed
by Heisenberg and Euler. To the first order in the fine structure constant αf =

e2

4πε0�c , it is given by (see also [39,35])

H =
√

ε0
µ0

{[
1 +

8αf

45B2
k

O
(
F ∧ OF

)]
OF +

14αf

45B2
k

O
(
F ∧ F

)
F

}
, (33)

where Bk = m2c2

e�
≈ 4.4 × 109 T, with the mass of the electron m. The met-

ric is again hidden in the Hodge star and the Maxwell-Lorentz limit results
analogously for m → ∞. The Casimir force between two uncharged electrically
conducting plates, also an effect of vacuum fluctuations, has been experimen-
tally verified as have been non-linear effects in the “superposition” of strong
laser beams. Accordingly, the non-linear constitutive law (33) is a valid post-
classical approximation of vacuum electrodynamics and as such experimentally
confirmed.

Note that these variants of classical electrodynamics respect charge and flux
conservation. This underlines the fact that our axiomatics clearly points to that
structure of electrodynamics, namely the constitutive law, which can be changed
without giving up the essentials of electrodynamics.

Both, Eqs.(32) and (33) are special cases of Plebański’s more general non-
linear electrodynamics [71]. Let the quadratic invariants of the electromagnetic
field strength be denoted by

I1 :=
1
2
O(F ∧ OF ) =

1
2
(E2 −B2) and I2 :=

1
2
O(F ∧ F ) = E ·B , (34)

where I1 is an even and I2 is an odd scalar (the Hodge operator is odd). Then
Plebański postulated a non-linear electrodynamics with the constitutive law6

H = U(I1, I2) OF + V (I1, I2)F , (35)

where U and V are functions of the two invariants. Note that in the Born-Infeld
case U and V depend on both invariants whereas in the Heisenberg-Euler case
we have UHE(I1) and VHE(I2). Nevertheless, in both cases U is required as well
as V . And in both cases, see (32) and (33), U is an even function and V and
odd one such as to preserve parity invariance.

If one chose V to be an even function, e.g., then parity violating terms would
emerge. Such terms were most recently discussed by Majumdar, Mukhopad-
hyaya, and SenGupta [48,56]; for the experimental situation (there seem no
signatures for parity violations) compare Lue et al. [47].

Singularity-Free Electro-Gravitodynamics. Recently, Ayón-Beato
& Garćıa [2], for earlier work see Shikin [79], have proposed a constitutive law

H = U(I1) OF , (36)

6 Strictly, Plebański assumed a Lagrangian which yields (17) together with the struc-
tural relations F = u(I1, I2) �H + v(I1, I2)H. The latter law, apart from singular
cases, is equivalent to (35).
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which, as subcases, does neither encompass (32) nor (33) and thus makes it
appear as rather academic. The explicit form of U is defined by the requirement
of obtaining completely singularity-free solutions of the coupled system of the
gravitational field (Einstein) and the electromagnetic field (non-linear Maxwell).
Examples of suitable functions U(I1) are given in [79,2].

In terms of the local time and space coordinates (t, r, θ, φ), the general spher-
ically symmetric ansatz for the coframe can be written as

ϑ0̂ = f(r) d t , ϑ1̂ =
1

f(r)
d r , ϑ2̂ = r d θ , ϑ3̂ = r sin θ d φ , (37)

whereas, for the electromagnetic field, we have

F = ϕ(r)ϑ0̂ ∧ ϑ1̂ . (38)

The exact solution of the coupled system of gravitational and electromagnetic
field equations, i.e., of Einstein’s equation (4) and Maxwell’s equations dF =
0, dH = 0, reads

ϕ =
q

U(I1) r2
, f2 = 1− 2m

r
+

Q(r)
r2

, (39)

where q,m are integration constants and (‘Tolman’s integral’)

Q(r) = κ r

∞∫
r

dr′K(r′) r′2, K = 2I1 U(I1)−
I1∫
dI ′1 U(I ′1). (40)

In the last function one should substitute the explicit form of the quadratic
invariant I1 computed on the spherically symmetric configuration (37) with (38).

It is shown in [79,2–4] that the constitutive function U(I1) can be chosen
in such a way that the functions in (39) describe a completely regular, i.e.,
singularity-free configuration.

6.3 Linear: Abelian Axion, inter Alia

A very important case is that of a linear constitutive law between the compo-
nents of the two-forms H and F . It postulates the existence of the 6 × 6 = 36
constitutive functions κij

kl(t, x) = −κji
kl = −κij

lk such that

Hij =
1
2
κij

kl Fkl. (41)

This kind of an ansatz we know from the physics of anisotropic crystals. The
factor 1/2 is chosen in order to have a smooth transition to the conventional
D = ε0 εE etc. relations, cf. [72] p.127.

The choice of the local coordinates is clearly unimportant. In a different coor-
dinate system the linear constitutive law preserves its form due to the tensorial
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transformation properties of κijkl. Alternatively, instead of the local coordinates,
one may choose an anholonomic frame and may then decompose the two-forms
H and F with respect to it.

Since H is an odd and F an even form, the constitutive functions κij
kl(t, x)

are odd. Taking the Levi-Civita symbol, we can split off the odd piece according
to

κij
kl =:

1
2
εijmn χmnkl or χijkl =

1
2
εijmnκmn

kl . (42)

Because of the corresponding properties of the Levi-Civita symbol, the χijkl are
even scalar densities of weight +1. For the Levi-Civita symbols with upper and
lower indices, we have εijkl εmnpq = δ i jk l

mnpq.
With the linear constitutive law (as with more general laws), we can set

up a Lagrangian 4-form; here we call it Vlin. Because of H = − ∂Vlin/∂F , the
Lagrangian must be quadratic in F . Thus we find

Vlin = − 1
2
H ∧ F = − 1

8
HijFpq dx

i ∧ dxj ∧ dxp ∧ dxq

= − 1
32
(
εpqijεijmnχ

mnkl
)
FklFpq dx

0 ∧ dx1 ∧ dx2 ∧ dx3 . (43)

The components of the field strength F enter in a symmetric way. Therefore,
without loss of generality, we can impose the symmetry condition χijkl = χklij

on the constitutive functions reducing them to 21 independent functions at this
stage.

The κij
kl carry the dimension [κ] = [χ] = e2/�. Therefore, still before intro-

ducing the metric, we can split off the totally antisymmetric part of χijkl and
define the dimensionless constitutive functions according to

χijkl = f
o
χ ijkl + α εijkl , with

o
χ [ijkl] = 0 . (44)

Here [f ] = [α] = �/e2, and f = f(t, x) and α = α(t, x) represent one scalar and
one pseudo-scalar constitutive function, respectively. Thus the linearity ansatz
eventually reads

Hij =
1
4
εijmn χmnkl Fkl =

f

4
εijmn

o
χmnkl Fkl + αFij , (45)

with
o
χmnkl = − o

χnmkl = − o
χmnlk =

o
χ klmn and

o
χ [mnkl] = 0 , (46)

i.e., besides α, we have 20 independent constitutive functions. Thus
o
χ nmkl has

the same algebraic symmetries and the same number of independent components
as a curvature tensor in a Riemannian spacetime.

Pseudo-scalars are also called axial scalars. So far, our axial scalar α(x) is
some kind of permittivity/permeability field. If one adds a kinetic term of the α-
field to the electromagnetic Lagrangian (43), then α(x) becomes propagating and
one can call it legitimately an Abelian7 axion. Ni [62] was the first to introduce
7 In contrast to the axions related to non-Abelian gauge theories, see [91,92,54] and
the reviews in [45] and [80].
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such an axion field α in the context of the coupling of electromagnetism to
gravity, see also deSabbata & Sivaram [16] and the references given there.

The Abelian axion has the following properties:

• Pseudoscalar field, i.e., spin = 0, parity = −1.
• Couples to Maxwell’s field in the Lagrangian according to αF ∧F = 2αE ∧

B∧dt, see (45) and (43). Here E is the 3-dimensional electric field 1-form and
B the corresponding magnetic field 2-form. This term in the total Lagrangian
can be written as

αF ∧ F = − dα ∧A ∧ F , (47)

dropping, as usual, the total derivative. This contributes to the excitation
H = −∂L/∂F a term

∼ dα ∧A . (48)

• Since it arises on the same level as the metric, see Eq.(64) below, it is a field
of a similar universality as the gravitational field.

As yet, the Abelian axion has not been found experimentally, see the discus-
sion of Cooper & Stedman [12] on corresponding ring laser experiments.

6.4 Isotropic

The linearity ansatz (45) can be further constrained in order to arrive eventually
at an isotropic constitutive tensor. We will proceed here somewhat unconven-
tional in that we don’t assume a metric of spacetime beforehand but rather
derive it in the following way:

Duality Operator, Electric and Magnetic Reciprocity. The constitutive
tensor

o
χ klmn of (45) defines a new duality operator which acts on 2-forms on

X. In components, an arbitrary 2-form Θ = 1
2Θij dx

i ∧ dxj is mapped into the
2-form #Θ by

#Θij :=
1
4
εijkl

o
χklmnΘmn , (49)

see [67,33]. No metric is involved in this process. Now the linear material law
(45) can be written as

H =
(
f # + α

)
F. (50)

We postulate that the duality operator, applied twice, should, up to a sign,
lead back to the identity. Such a closure relation or the “electric and magnetic
reciprocity” [85] reduces the number of independent components of

o
χ to 9 (with-

out using a metric). One can demonstrate that this is a sufficient condition
for the nonexistence of birefringence in vacuum, see [62,63,46,64,28]. Then the
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fourth-order general Fresnel equation degenerates to the second-order light cone
equation. Therefore, we impose

## = −1 . (51)

The minus sign yields Minkowskian signature8, whereas the condition ## = +1
would lead to Euclidean or to the mixed signature (+,+,−,−).

Seemingly Toupin [85] and Schönberg [77] were the first to deduce the confor-
mally invariant part of a spacetime metric from duality operators and relations
like (49) and (51). This was later rediscovered by Jadczyk [40], whereas Wang
[90] gave a revised presentation of Toupin’s results. A forerunner was Peres [69],
see in this context also the more recent papers by Piron and Moore [70]. Brans
[7] and subsequently numerous authors discussed such structures in the frame-
work of general relativity theory, see, e.g., [9,37,26,68] and the references given
there.

It is convenient to adopt a more compact bivector notation by defining the
indices I, J, · · · = (01, 02, 03, 23, 31, 12). Then

o
χijkl becomes the 6 × 6 matrix

o
χ IK and (51) goes over into

o
χ IJ εJK

o
χ KL εLM = −δIM . (52)

In terms of 3× 3-constituents an arbitrary symmetric
o
χ IK =

o
χ KI constitutive

matrix reads

o
χ IJ =

o
χ JI =

(
A C
CT B

)
, εIJ = εJI =

(
0 1
1 0

)
, (53)

where A = AT , B = BT, and the superscript T denotes transposition. The
algebraic condition εIJ

o
χ IJ ≡ 0 is provided by trC = 0.

The general non-trivial solution of the closure relation (52) can be written in
the form

o
χ IJ =

(
pB−1 + qN B−1K
−KB−1 B

)
. (54)

Here B is a nondegenerate arbitrary symmetric 3×3 matrix (6 independent com-
ponents Bab), K an arbitrary antisymmetric matrix (3 independent components
Kab =: εabc kc), N the symmetric matrix with components Nab := kakb, and
q := −1/detB, p := [tr(NB)/detB]−1. Thus, Eq.(54) subsumes 9 independent
components.

Triplet of Self-Dual 2-Forms. The duality operator # induces a decom-
position of the 6-dimensional space of 2-forms into two 3-dimensional invari-
ant subspaces corresponding to the eigenvalues ±i. Writing the 2-form basis
8 One could define a different duality operator by #̂Θij = f

4 εijkl

o
χklmnΘmn such that

#̂#̂ = −f2.
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ΘI = dxi ∧ dxj in terms of the two 3-dimensional column vectors

ΘI =
(
βa

γb

)
, a, b, · · · = 1, 2, 3, (55)

one can construct the corresponding self-dual basis
(s)
ΘI := 1

2 (Θ
I − i#ΘI). In the

3-vector representation,

(s)
Θ

I =

 (s)
β a

(s)
γ b

 , (56)

one of the 3-dimensional invariant subspaces can be spanned either by the up-
per or by the lower components which are related to each other by a linear

transformation. For example,
(s)
β can be expressed in terms of

(s)
γ according to

(s)
β = (i+B−1K)B−1

(s)
γ . Therefore

(s)
γ or, equivalently, the triplet of 2-forms

S(a) := −(B−1)ab (s)
γ b

=
i

2
(dx0 ∧ dxa − (detB)−1 kb dxb ∧ dxa

+ i (B−1)ab εbcd dxc ∧ dxd). (57)

subsume the properties of this invariant subspace. Each of the 2-forms carry 3
independent components, i.e., they add up to 9 components.

The information of the constitutive matrix
o
χ IJ is now encoded into the

triplet of 2-forms S(a). One can verify that the latter satisfies the completeness
relation

S(a) ∧ S(b) =
1
3
(B−1)ab (B)cd S(c) ∧ S(d) . (58)

Extracting the Metric. Within the context of SU(2) Yang-Mills theory, Ur-
bantke [88] was able to derive a 4-dimensional spacetime metric gij from a triplet
of 2-forms satisfying a completeness condition of the type (58). Explicitly, the
Urbantke formulas read√

det g gij = − 2
3

√
detB εabc ε

klmn S
(a)
ik S

(b)
lmS

(c)
nj , (59)√

det g = − 1
6
εklmnBcd S

(c)
kl S

(d)
mn . (60)

The S
(a)
ij are the components of the 2-form triplet S(a) = S

(a)
ij dxi ∧ dxi/2. If we

substitute the forms (57) into (59) and (60), we can display the metric explicitly
in terms of the constitutive coefficients:

gij =
1√

detB

(
detB − ka
− kb −Bab + (detB)−1 ka kb

)
. (61)
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Here ka := Babk
b = Bab ε

bcdKcd/2. One can verify that the metric in (61) has
Minkowskian signature. Since the triplet S(a) is defined up to an arbitrary scalar
factor, we obtain a conformal class of metrics.

Given a metric, we can now define eventually the notion of local isotropy.
Let T i1...ip be the contravariant coordinate components of a tensor field and
Tα1...αp := ei1

α1 · · · eipαp T i1...ip its frame components with respect to an or-
thonormal frame eα = eiα ∂i. A tensor is said to be locally isotropic at a given
point, if its frame components are invariant under a Lorentz rotation of the
orthonormal frame. Similar considerations extend to tensor densities.

There are only two geometrical objects which are numerically invariant under
local Lorentz transformations: the Minkowski metric oαβ = diag(+1,−1,−1,−1)
and the Levi-Civita tensor density εαβγδ. Thus

T ijkl = φ(x)
√−g (gikgjl − gjkgil

)
+ ϕ(x) εijkl (62)

is the most general locally isotropic contravariant fourth rank tensor density of
weight +1 with the symmetries T ijkl = −T jikl = −T ijlk = T klij . Here φ and ϕ
are scalar and pseudo-scalar fields, respectively.

One can prove that the constitutive tensor in (45) with the closure property
(51) is locally isotropic with respect to the metric (61), see also [63]. Accordingly,
for the constitutive tensor, we finally have

o
χ ijkl = 2

√−g gk[igj]l . (63)

Thus, the isotropic law reads

Hij =
f

2
εijmn

√−g gkmgln Fkl + αFij (64)

or, if written with the help of the Hodge star operator belonging to the metric
(61),

H = (f O + α)F . (65)

6.5 Centrosymmetric

If we want the constitutive tensor to be reflection symmetric at each point of
spacetime, i.e., if we require centrosymmetry, then we have to kill the Abelian
axion and arrive, provided F is chosen in accordance with the SI-conventions,
at the usual law for Maxwell-Lorentz vacuum electrodynamics9

H = f OF =
√

ε0
µ0

OF . (66)

9 Remember that in Ricci calculus the excitation is defined according to Hij |Ric =
εijklHkl/2 . Then Hij |Ric = − f

√−g F ij , see (11)1.
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7 Non-minimal Coupling Involving Curvature,
Nonmetricity and Torsion?

7.1 Non-minimal Coupling Violating Charge
and/or Flux Conservation

The Maxwell equation dH = J reflects (and comes from) the electric current
conservation, dJ = 0, see Sec.4. By modifying the left hand side of dH = J ,
one can arrive at a model violating charge conservation. Such a modification can
typically originate from a non-minimal coupling of the electromagnetic to the
gravitational field. Given the torsion 2-form Tα, one can consider, for example,
the field equation

dH + α (eα3Tα) ∧H + β O(ϑα ∧ Tα) ∧H = J , (67)

or, with the nonmetricity 1-form Qαβ := −Dgαβ and the Weyl 1-form Q :=
Qα

α/4,

dH + γ Q ∧H + δ O(ϑα ∧ ϑβ ∧Qαβ) ∧H = J . (68)

Similar non-minimal terms could emerge in dF = 0. However, curvature depen-
dent terms cannot be accommodated at the level of the Maxwell equations, since
the contraction of the indices produces always a form of even rank whereas the
Maxwell equations are represented by 3-forms, i.e., by forms of odd rank. In any
case, violating charge or flux conservation is not possible without giving up most
of the experimentally established structure of the theory of electromagnetism.
Therefore we will not follow this path.

Incidentally, there are some papers in the literature in which the conventional
vacuum constitutive law H ∼ OF is uphold, but the Maxwell equations are
coupled to torsion in an inconsistent way. A closer inspection of the papers
[75,15,82] shows that the proposed “non-minimal” coupling of torsion to the
electromagnetic field is void of physical contents. In fact, torsion drops out if the
algebra is done correctly.

Another procedure comes to mind if we talk about the violation of the conser-
vation laws. Hojman et al. [36] introduced a new scalar field ϕ(x), the tlaplon, see
also Mukku & Sayed [57]. The gradient dϕ of the tlaplon was put proportional
to the trace part (2)Tα := ϑα ∧ T of the torsion Tα, see [31]; here T := eβ3T β .
In fact, we have T = 3

2 dϕ.
Superficially, the axial scalar α(x) (Abelian axion) and the scalar tlaplon ϕ(x)

may look similar. However, the axion already emerges from spacetime viewed
as a differential manifold as soon as a linear constitutive law is assumed for
electromagnetism, whereas the tlaplon can only be introduced if the differential
manifold in equipped with a linear connection. In other words, the axion is a
pre-metric and a pre-connection animal, the tlaplon, in contrast, needs to be
‘housed’ in a linear connection.

Moreover, as we saw, the axion respects the conservation laws (and pleases
us thereby), whereas the tlaplon defies these rules and appears as an anti-
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electromagnetic creature. The electromagnetic field is not defined in the conven-
tional way, namely by F = dA. Instead, Hojman et al. define it via a “covariant”
derivative according to

F̂ = F − TαAα = F +
1
3
T ∧A = F +

1
2
dϕ ∧A. (69)

Thus the “electromagnetic” Lagrangian becomes

F̂ ∧ OF̂ = F ∧ OF + dϕ ∧A ∧ OF +
1
4
T ∧A ∧ O(T ∧A) . (70)

The last term does not contribute to the excitation H = −∂L/∂F , but the
second term produces a contribution

∼ O(dϕ ∧A). (71)

We can compare now the two contributions from the axion (48) and the
tlaplon (71). They are reminiscent of each other since one is equal to the Hodge
dual of the other. Therefore, in the tlaplon case, besides a connection, we need
additionally a metric. But the most decisive difference is, as can be read off from
(70), that the Maxwell equations get amended and axiom 1 and axiom 3 are no
longer valid.

7.2 “Admissible” Non-minimal Coupling

The message is then that a change of the Maxwell equations dH = J , dF = 0
is to be avoided, unless one allows for a violation of electric charge or magnetic
flux conservation. By introducing the metric gij into the constitutive law, one
gets a smooth and natural transition from special relativity to general relativity
and to gauge theories of gravity. In the constitutive law for vacuum one could
imagine, along with the contributions depending only on the metric, couplings
like [23]

χijkl = A1 R
ijkl +A2 R

∗ ijkl +A3
OR∗ ijkl

+A4 (Rici[kgl]j −Ricj[kgl]i) +A5 Rgi[kgl]j +A6 Rεijkl (72)

without violating the conservation laws. Here R := eα3eβ3Rα
β is the curvature

scalar, and we denote the right or Lie dual of an so(1, 3)-valued form ψαβ by
ψ∗αβ := 1

2 εαβµν ψ
µν .

Choose, for example, χijkl = 2
√−gf0(1 + β2 R) gi[kgl]j , then the inhomoge-

neous Maxwell equation would read

d OF + β2d (R OF ) =
1
f0

J , (73)

i.e., a coupling of curvature and electromagnetic field strength would be possible.
However, one had to introduce a new natural constant with the dimension of
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[β] = 1/length. On the level of the Lagrangian, this coupling would be non-
minimal,

Vnon−m = − f0
2
(
1 + β2R

)
OF ∧ F , (74)

but such an ansatz would not spoil the fundamental principles of electrodynam-
ics; it would seem to be the most natural way of achieving an RF -coupling.
Goenner [23], see also the literature given there, derived this non-minimal La-
grangian from some fundamental principles, like the existence of a decent New-
tonian limit. However, in his view, such a model violates charge conservation.
We disagree with him on this point.

We want to stress that one cannot achieve a similar non-minimal coupling to
the torsion Tα of spacetime. First of all, the Maxwell equations are independent
of torsion. By means of the constitutive law one maps the 2-form F to the 2-
form H. The curvature Rα

β is a 2-form of type (1, 1), i.e., it carries two GL(4, R)
indices, whereas the torsion 2-form carries only one index. Therefore, by con-
traction, we cannot get a scalar out of the torsion. A coupling like (eα3Tα)∧ OF
is not possible, since this is a 3-form. However, higher powers in Tα would be
possible such as

H = f0
[
1 + γ2 O(Tα ∧ Tα)

] ∧ OF (75)

or
H = f0

[
1 + δ4 O

(
(eα3Tα) ∧ (eβ3T β) ∧ (eγ3T γ) ∧ (eδ3T δ)

)] ∧ OF . (76)

Here [γ] = [δ] = 1/length. Accordingly, it is not too difficult to introduce a
coupling of torsion to electromagnetism. However, the price one has to pay is the
introduction of new natural constants γ and δ. In other words, even if possible,
we don’t take such models too seriously.

Also non-minimally coupled nonmetricity could be installed by additional
quadratic pieces such as

H = f0
[
1 + ξ2(eα3Qαγ)(eβ3Qβ

γ)
]
OF . (77)

Therefore, there are quite a number of different “admissible” options available
as soon as we allow non-minimal couplings to arise.

8 Outlook

Using astronomical observations on the propagation of light, the upper bounds
for non-minimal coupling effects should be determined in a systematic way, as
is done, for example, by Haugan and Lämmerzahl [28]. For such a purpose, we
will develop [66] the geometrical optics limit of the Maxwell equations dH =
J, dF = 0 and will use particular constitutive laws, as, e.g., the linear law.
Possible couplings to curvature, torsion, and nonmetricity should come under
sharper focus in this way. Non-linear effect à la Ayón-Beato & Garćıa should be
investigated in the context of, say, the metric-affine gauge theory of gravity.
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